
Moldable Load Scheduling Using Demand Adjustable Policies

Master of Engineering

in

Computer Science and Engineering

Submitted By

Sachin Bagga

(Roll No.821132009)

Under the supervision of:

Dr. Deepak Garg

Head and Associate Professor

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT

THAPAR UNIVERSITY

PATIALA – 147004

June 2014

i

ii

Acknowledgment

I express my sincere and deep gratitude to my guide Dr. Deepak Garg, Head and

Associate Professor in Computer Science and Engineering Department, Thapar

University Patiala, for the invaluable guidance, support and encouragement. He

provided me all resource and guidance throughout thesis work.

I would also like to thank to all staff members who were always there at the need of

hour and provided with all the help and facilities, which I required for the completion

of my thesis .At last but not the least I would like to thank God and mine parents for

not letting me down at the time of crisis showing me the silver lining in the dark

clouds.

iii

 Abstract

Workload distribution among processors is one sided task. Whereas consistent

management of processor availability to bulk job arrival is an aspect of resource

management. Parallel systems where high probability of infinite job arrivals with

varying processor demand requires a lot of adjustment efforts to map processors

space over job space .Each job has different required characteristics like no. of

processors etc. But the number of available resources is of different characteristics.

Particular characteristic processor demanded by a job usually is not available. Such

case scenarios are then adjusted to adapt moldable parallel characteristics. Rigid based

approaches considered as static demand fit allocation schemes where the job is

considered to be active task only when scheduler satisfied the processor demand.

Current research focuses on demand adjustment schemes by considering synthetically

generated work load and processor availability map with discrete clock frequency.

Illustrations produced on the basis of simulation study about demand adjustment

schemes consisting static and dynamic approaches with the aim of consistent

processor availability fit i.e. processor offered space. Idea behind such experimental

study is to analyze various scheduling algorithms along with different performance

parameters managing best processor space.

iv

Table of Contents

Certificate i

Acknowledgement ii

Abstract iii

Table of Contents iv

List of Figures vii

List of Tables ix

 Chapter 1: Introduction 1-9

1.1 Introduction 1

 1.2 Parallel and Distribution System 2

 1.3 Degree of Parallelism 3

 1.4 Parallel Computing Environments 4

 1.5 Parallel Job Characterization 4

 1.5.1 Rigid Jobs 4

 1.5.2 Moldable Job 5

 1.5.3 Malleable Jobs 6

 1.6 Developing and Analyzing Parallel System 6

 1.6.1 Cluster Based parallel Programming 6

 1.6.1.1 Socket Based MPI Communication 6

 1.6.1.2 RMI Based RPC implementation 7

1.6.2 Mathematical Model (Formal specifications) 8

1.6.3 Simulation based experimental studies 9

Chapter 2: Literature Review 10-19

2.1 Parallel Computing Models 10

2.2 Parallel Scheduling 10

v

 2.2.1 Types of Scheduling 10

 2.2.2 Static Scheduling 11

 2.2.1.1 Fair-share scheduling 12

 2.2.1.2 Gang Scheduling 12

 2.2.3 Dynamic Scheduling 13

2.3 Research towards Workload Characterization 13

 2.3.1 Work Load Characterization 13

 2.3.1.1 Synthetic Work Load 13

 2.3.1.2 Actual Work Load 16

 2.3.2 Characterizing Moldable Parallel Jobs 16

2.4 Effective Scheduler Characteristics 18

Chapter 3: Proposed Work 20-36

 3.1 Problem Formulation 20

 3.2 Space sharing policy 21

 3.3 Demand Based Model for Moldable Scheduling 21

 3.4 Approaches to Demand Based Allocation Schemes 23

3.4.1 Strictly Demand Fit Allocation (SDF) 23

3.4.2 Extreme-Ending Moldable Approach (EEMA) 25

3.4.3 Moldable-Load Impact Demand Adjustment (M-LIDA) 28

3.4.4 Proportionate Processor Width Partitioning (PWP) 31

 3.5 Demand Adjustment Benefits 34

 3.6 Run Time Demand Adjustments 36

Chapter 4: Results and Discussions 37-48

4.1 Parameters under consideration 37

4.2 Experimental Setup 39

vi

4.3 Illustrations 41

Chapter 5: Conclusions 49-51

5.1 Conclusion 49

5.2 Future Work 50

References 52-53

vii

LIST OF FIGURES

 .

FIGURE

NO.

FIGURE NAME PAGE NO

Figure 1.1 Basic architecture of Java RMI 8

Figure 2.1 Showing ways of scheduling Processors 11

Figure 2.2 Showing number of jobs of same nature active

concurrently

13

Figure 2.3 Showing various Jobs characteristics 15

Figure 2.4 Number of jobs arrived simultaneously in a single

Batch

15

Figure 2.5 Snapshot of a data produced during execution of

jobs

16

Figure 3.1 Showing space sharing policy in action 21

Figure 3.2 Showing Demand Based Model for Moldable

Scheduling

22

Figure 3.3 Flow chart showing working of strictly Demand Fit

Allocation (SDF)

24

Figure 3.4 Showing Simulator status strictly Demand Fit

Allocation (SDF)

25

Figure 3.5 Flow chart showing working of Extreme-Ending

Moldable Approach (EEMA)

27

Figure 3.6 Flow chart for working of Moldable-Load Impact 30

Figure 3.7 Showing Simulator status Moldable-Load Impact

Demand Adjustment (M-LIDA)

31

Figure 3.8 Flow chart for working of Proportionate Processor

Width Partitioning (PWP)

33

Figure 3.9 Currently Active Jobs in SDF 35

Figure 3.10 Currently Active Jobs in M-LIDA with POS-20 35

Figure 4.1 Excessive cycle Length 38

Figure 4.2 Showing layout of load generation 40

Figure 4.3 Showing different components of simulator 40

viii

Figure 4.4 Currently Active Jobs in M-LIDA with POS-30 41

Figure 4.5 PLP (Process Level Parallelism) - in PWP 42

Figure 4.6 Overall Execution End Time 43

Figure 4.7 PLP (Process Level Parallelism)-2.8 GHz to 1.0

GHz

43

Figure 4.8 PLP (Process Level Parallelism)-2.8 Ghz to 2.0

Ghz

44

Figure 4.9 PLP (Process Level Parallelism)-2.8 GHz to 2.8

GHz.

44

Figure 4.10 PLP (Process Level Parallelism)- 2.8 GHz to 3.4

GHz

45

Figure 4.11 PLP (Process Level Parallelism)- 2.8 GHz to 3.8

GHz.

45

Figure 4.12 Throughput– 2.8 Ghz to 1.0 Ghz. 45

Figure 4.13 Throughput– 2.8 GHz to 2.0 GHz. 46

Figure 4.14 Throughput– 2.8 GHz to 2.8 GHz. 46

Figure 4.15 Throughput– 2.8 Ghz to 3.4 Ghz. 47

Figure 4.16 Throughput– 2.8 GHz to 3.8 GHz. 47

ix

List of Tables

Table

Number

 Table Name Page Number

Table 2.1 Showing Distribution of CPU cycles according to fair

share policy

12

Table 4.1 Showing Summarize behaviour of various parameters

for various Schemes

50

1

Chapter 1

Introduction

1.1 Introduction
Parallel application logic designed on the basis of demand oriented workload structure,

where workloads are characterized in terms of number of processor required, decisions

for appropriate processing demand will be considered either by number of simultaneous

processing threads in a job structure or number of partitioned data sets available. Former

specifies control parallel aspects of computation whereas later specifies data parallel

aspects of computation. Managing demand based workload in a high data intensive

system where infinite job arrival is a very tricky task, because the probability of lesser

number of processor available than total demanding needs of the waiting data set is

generally high so need of demand adjustable schemes considered as future trend in

processor scheduling. Rigid based application structures can be easily executed on

systems having bulk of processor offered space (POS) available. Moldable approaches

where scheduler takes the decision to map processor available space to job demanding

space. The success of such schedulers is dependent upon task adaptability structure (TAS)

i.e. capability of task to modify its logical structure to adapt current scenario change. A

moldable job can run with any number of processors, within certain range and leaves the

decision to the scheduler for parallelism change. The constraint is that only scheduler can

decide during runtime the resources can be changed or not but job itself cannot.

Resources adjusted at program start, such jobs are moldable. Although, scheduler can

manage dynamic change in parallelism at run time (increase or decrease in job demand

during execution) despite of this, ongoing parallelism change from jobs perspective is

another aspect of task adjustment where tremendous parallelism change in task execution

life cycle exists. Jobs which give us the facility of changing the assigned number of

resources itself during run time are called malleable jobs. This scheduling is also known a

dynamic partitioning. In general parallel jobs provide simultaneous control/data driven

modules. In moldable structure where one to one mapping is not possible, how a large

scheduling thread will be mapped to minimum possible resource available? The solution

2

to such mapped driven process is to compute computation size of each and every thread

of a task and then estimate clock burst of each available processor in one unit time. Now

the threads are grouped together corresponding to their collaborate execution cycle and

available processor cycle speed. Two or more threads may be given to single individual

processor capable to handle intended computation in multitasked concurrent operation, i.e

threads are grouped together respective to the processors clock capacity and executed

along with context switching.

1.2 Parallel and Distribution System
Parallel computing, as the name suggests is an efficient form of computing capable to

execute more than events simultaneously or concurrently with the use of multiple

processing units. The processing units may be either a complete CPU (Central Processing

Unit) or it can be structured as a multiple ALU’s (Arithmetic & Logical Unit) under the

control of a common control unit. The idea behind the invention is because of the

principal that larger problems can be solved quickly if divided into smaller units and

distributed amount to the multiple processing units. Parallel computing programs or

algorithms are more difficult to write than sequential ones because now behaviour of the

algorithm involves concurrency and this will introduces several new classes of bugs of

which race conditions are most common. Parallel computing also not suitable for

applications where high amount of dependencies are involved .In such cases the

application threads may delay its execution till obtaining the result of its other

cooperative threads involved for the production of final outcome .Race condition is

nothing but uncertain programming exceptions , which produces unpredictable program

state and behaviour due to un-synchronized concurrent events. Race condition originates

because of unintentional software coding by programmers .Race condition are hard to

find with the conventional debugging methods and tools and requires much of the

experience from programmer side. It is an important guideline for the programmer aware

of such land mines, which are the strong obstacles into the growth before entering into the

dangerous parallel programming zone. The most often race condition are data race

conditions, a data race conditions caused due to the simultaneous access on the same

memory location.

3

1.3 Degree of Parallelism
Degree of parallelism can be defined as the maximum event up to which the application

can achieve parallelism. No. of levels have been defined and each of which having

improved degree of parallelism .Moving one level to another will provide more fine

grained parallelism.

i. Job or Program level:

Job level parallelism as the name suggests where multiple

programs/process is executed parallel among various processing elements.

This is the highest level of parallelism and usually implemented

algorithmically.

ii. Procedure Level:

Next highest level of parallelism is the procedure level. Where multiple

modules of functions of the application or algorithm will be executed

parallel. This type of parallelism will also dependent upon the modular

structure of the program.

iii. Inter - Instruction Level:

Next fine grained parallelism level is inter instruction level in this type of

parallelism procedures or modules further partitioned among various

instructions which are then executed parallel because procedures are self

contained block of code which must be written in such a way to achieve

parallelism. Data dependency will be more in such types of parallelism .So

there might be possible of instruction execution delay.

iv. Intra - Instruction Level:

The last and the highest degree of parallelism is Intra –Instruction level

where the instruction is further divided into instruction segments, which

are then solved parallel. This type of parallelism requires much of the

programming experience and also having high degree of data dependency

a compare to previous one. Synchronization, coordination instruction final

composition are more difficult.

4

1.3 Parallel Computing Environments
Various parallel computing environments have been researched based upon various

taxonomies:-

i. Array Processor:

Array Processors are the machines having two or more ALU’s under the

control of a single control unit. These types of systems are capable to perform

single instruction multiple data streams. The control unit sends the same

instruction to all Processing elements which then performs those similar

operations over different parts of the problem.

ii. Multiprocessor System:
Multiprocessor System is the system having two or more Central Processing

Units. These are the rue parallel system having the capability to perform

parallel computation within a single system. Multi- core processor or chip

level processing is now the most common type of parallel computers .Such

type of systems are composed of two or more independent core or (CPU’s).

The cores are typically integrated onto a single integrated circuit die known as

a chip multiprocessing or CMP.

iii. Multi Computer System:
Contrasting with multiprocessor, Multi Computers on the other hand are

collection of standalone computers connected to form a network. Such

systems are also referred to as massively distribute parallel systems.

Programming such type of systems are more difficult because synchronization

, message passing overheads like sending , accepting, interpreting messages

require much of the programming efforts.

1.5 Parallel Job Characterization
1.5.1 Rigid Jobs

Parallel jobs that has the capability to execute on a given separation size are called rigid

jobs. A real-world job log contains information about scheduling of jobs submitted to a

5

supercomputer over a period of time. For each job scheduled on the system, the

information found in a job log generally includes:-

i. The job identification number,

ii. Submission time,

iii. Commence time,

iv. End time,

v. Allocated amount of processors,

vi. Requested maximum time,

vii. Memory needed, Used CPU hours.

All these decisions are taken by the scheduler itself. Such kind of job will not start until

the exact requirement of a job is fulfilled, as a result it can lead to the inefficient resource

utilization and degradation in the efficiency can occur.

1.5.2 Moldable Job

When the number of resources is adjustable during the execution then the job is called

moldable. These types of jobs within in specific range can run can run on any number of

processor. To evaluate moldable task scheduling policy, in addition to the particulars

presented in rigid-scheduling job logs, the following further particulars are required for

each job:

i. Choice of processor requirements.

ii. Approximate implementation times matching to the process

iii. Scalability Information.

Number of parallel programming techniques like PVM, MPI is there which before starting

the execution will ask the user for the number of processors requirements on which the

task has to run. Further extending this in MPI-2, the user can change the number of

resources assigned as per requirement during execution time. Thus MPI-2 supports

effectively the concept of malleable jobs which will be discussed in the next section. The

moldable jobs can also said to be monotonic if allocation of more resources results in

decreasing the execution time and increasing the throughput.

6

1.5.3 Malleable Jobs

When the jobs give us the flexibility of changing the number of the assigned resources

during its execution then such jobs are known as malleable jobs. Such a kind of

scheduling is also known as dynamic partitioning.

1.6 Developing and Analyzing Parallel System

1.6.1 Cluster Based parallel Programming:-

The cluster based processing can be performed through Sockets, RMI :-

1.6.1.1 Socket Based MPI Communication

End points for communication are defined as Socket. For the purpose of communication

in sockets the client server model is used. It is a mixture of a protocol which defines a

type of service on the network, the port number, IP address. IP address/Host Name a

unique IP address is used for communication. It is of 32 bit specified with four Octets. It

is as per the format of IP v4. The advanced communication has provided us the IP address

of 128 bits in IP v6 format. Further classification has been done in the form of classes A,

B, C, D etc. We can also use a virtual name known as host name for the sake of

simplicity. But at the machine level the way in which the communication is done it is

with the help of MAC (Media Access Control 48 bit NIC address).

a. Port Numbers

In order to uniquely identify a particular service running on some machine a port

number is used. After the connection has been made through which data can be

send and receive the port number helps in uniquely identifying it.

b. Socket Protocol

The mode through which communication has to be done like TCP or UDP it is

defined through the socket protocol. The reliable connection services are provided

by the TCP and unreliable but a very fast communication is provided by the UDP.

7

The Key Notes during socket programming are as follow:

i. A unique port number and communication protocol must be defined by the server

side socket.

ii. Remote host IP, port protocol has to be defined by the socket.

iii. The port number has to be greater than 1024

iv. During connection making process no two or network application should have

same port number.

1.6.1.2 RMI Based RPC implementation

i. Application Layer:-The actual implementation of client and server takes place at

the application layer. An interface that extends java.rmi.Remote must declare

number methods. With the help of this interface the client can access these remote

methods. The methods which are defined in the one or more interfaces which is

extending the java. rmi. Remote interface can be remotely invoked. And at the last

the RMI registry is used in order to register the application. Through RMI registry

remote object’s reference can be get by the client.

ii. Proxy Layer: - The stub and skelton at the client and the server respectively are

defined at this layer. The remote object’s proxy is acted by the stub at the client

machine. Similarly for the remote object’s proxy at server side is acted by the

skelton. Getting the stream of bytes from the Java’s byte code is known as

Marshalling and it is done by the stub. Similarly the reverse process of getting the

byte code is known as Unmarshalling. Due to the stub and the skelton which

forms the communication link between the client and remote objects it appears to

the client that remote objects is within the JVM(Java Virtual Machine). The rmic

compiler creates stub and skelton.

iii. Remote Reference layer: - In order to provide the abstraction between the stub

and the skelton the remote reference layer is used. A stream oriented connection is

made for the data provided by this layer at the transport layer. For the purpose of

recovery of lost connection the remote reference layer provides the way out.

8

iv. Transport Layer: - The actual transmission from one machine to another

machine in the form of electric signal is done by the transport layer. A stream is

created through which sending and receiving of data from one machine to another

is accessed by the remote reference layer. Establishing the connection, managing

the connection and monitoring are the main tasks of this layer.

Figure 1.1: Basic architecture of Java RMI

1.6.2 Mathematical Model (Formal specifications)

Formal specification comes under the descriptive design theory using mathematical

notations .The purpose of applying formal methods is to perform pre-analysis of software

design statements as well as research under observations which may act as benchmark for

future implementation. The design statements usually involves mathematical model to

elaborate pseudo codes, algebraic specifications, verification, validation design aspects.

During development mathematical models are constructed to achieve accurate maturity

process. This will provide error free specification analysis in earlier phases of software

development. Formal specification methods can be applied in any development

segment/phase. Such methods include boolean logic, set theory, qualitative and

quantitative variable description. These are written with sound mathematics whose syntax

and semantics are formally defined and justified. Such mathematical terms could be

successful to represent

observed using these mat

 Symbolic notation

 Actors

 ∀ x: P(x) ∀ n ∈ ℕ:

1.6.2 Simulation based

Simulation via program

applied research. Such

justify the problem statem

for asymptotic comparis

captured result formuliza

action implementation co

9

theoretical aspects in an analytical form. R

hematical justifications.

ns like as-

activity Where Activity Fun1 Fun2…….

means P(x) is true for all x.

 n2 ≥ n

d experimental studies

mmatically designed under some formulated

techniques usually come under immediate ac

ment via implementation logic. Standard notati

on i.e. standard graphical curves are compare

ation. After deterministic analysis and justifica

ontinues to estimate.

Results could be

observations of

ction research to

ions are available

d with simulated

ations immediate

10

Chapter2

Literature Review

2.1 Parallel Computing Models

Traditionally a serial computation involving single core processor is basically a sequential

execution. Micro operations are executed one by one along with garbage collection of

various CPU registers. This will be required to start immediate next operation occurred in

the instruction. So, the delay in instruction execution, results in parallel computation

model. Therefore, the various parallel computing models used in simultaneous and

concurrent processing are as follows:

Generalized parallel computing model:

• Synchronous PRAM.

• Asynchronous PRAM.

Flynn’s Computation Model:

• SISD

• SIMD

• MISD

• MIMD

2.2 Parallel Scheduling
The different number of ways in which we can assign number of processors to various

numbers of jobs for simultaneous execution is known as parallel scheduling. There are

various manners through which we can implement parallel scheduling, depending upon

static policies, dynamic policies, time sharing, space sharing etc. It is discussed in the

next section [14].

2.2.1 Types of Scheduling

The scheduling techniques can be broadly specified as:-

11

Figure 2.1: Showing ways of scheduling Processors

2.2.2 Static scheduling:

In this type of scheduling once the processor allocation has done, the allocated processors

are not reclaimed until the job finishes. This type of allocation can result in ineffective

utilization of the system capabilities because of the variations among the system work

load .The snapshot of such a database is shown below we can see that each job is having

different processor requirements in terms of frequencies, number of processors, CPU

burst cycle etc. If for such kind of jobs the static allocation is done then different types of

performance factors like excessive cycle length, number of jobs completed per unit time,

number of jobs concurrently running per unit time may not be in favour of the user.

Processor
Allocation

Based upon reallocation of
the frequency of processor

by the Scheduler

Static
Scheduling

Based upon number of
processors

Dynamic
scheduling

Time
Sharing

Space
Sharing

Local
Queue

Global
Queue

Hybrid

Example
Round
Robin

Fixed
Partioning

Variable
Partioning

Adaptive
Partioningg

Example
1) Gang

Scheduling
2)Fair Share
Scheduling

12

2.2.1.1 Fair-share scheduling: In this type of scheduling the usage of the CPU is equally

distributed among number of co-ordinating parties. For uniprocessor system number of

simultaneously arrived jobs are fairly portioned corresponds to the CPU time

computation. In parallel system where number of computation resources is many more

along with number of simultaneous arrivals .In such cases computation resources are

fairly portioned among coordinating units. Suppose a CPU having 1000 cycles in one unit

time which has to distribute among 5 jobs where each job has varied numbers of threads

as described:

Table 2.1: Showing Distribution of CPU cycles according to fair share policy

 2.2.1.2 Gang Scheduling: - In this type of scheduling the scheduler schedules the

number of threads or processes of the same nature in such a way that the same type of

processes execute at the same time on different number of processors. The threads of the

same nature that are running simultaneously shall belong to the same process or they

might belong to different processes.

CPU Burst Cycles 1000

Process 1

200

Process 2

200

Process 3

200

Process 4

200

Process 5

200

TU1

40

TU2

40

TU3

40

TU4

40

TU5

40

TU1

66.6

TU2

66.6

TU3

66.6

TU1

100

TU2

100

TU1

200

TU2

200

13

Figure 2.2: Showing number of jobs of same nature active concurrently

2.2.2 Dynamic Scheduling :-In these policies the reallocation of the assigned processors

to a particular workload can be done as per the requirement .For reallocation to be done

the jobs in the given work load should be in such a way that they can run on different

number, types of processors, than the initial requirements of the job. In dynamic

scheduling we can change the number of processors requirements before the execution

begins, during the execution. The dynamic scheduling gives better results. Assume

initially before execution of the job if a job requires C1 clock cycles and B1 burst cycle

then after t1 time the requirements will not be same after a certain time t2 and we can

reclaim the resources initially assigned.

2.3 Research towards Workload Characterization
2.3.1 Work Load Characterization:

It is classified into types:

• Synthetic workload

• Actual workload

2.3.1.1Synthetic Work Load

Sample based simulation experiment is performed where synthetic workload is generated

using random distribution. Simultaneous job arrival may exist, so batches of jobs are

organized. Each batch contains number of jobs arrived at same instance with

14

characteristics like Job Id, CPU Burst, Processing Demand. Overall simulation structure

consists of processor availability space also known as POS (processor offered space),

their frequency clock, Front End Job Queue along with Batch Id and their respective no.

of jobs, overall allocation status, currently active job status, simulation start and end

time, Excessive cycle length, Policy Detail etc.. In general simulation design is based

upon multithreading synchronization. Each thread is intended to perform their assigned

work like maintaining incoming batch queue, overall allocation status, organizing

currently active scheduling list, lists of completed jobs etc. As described each job having

its unique identification (JID) and burst cycle refers to the estimated time in terms of CPU

cycle required. Processing demand specifies range of processor required by each job,

Synthetic work load front end queue (SWFEQ) is generated according to specific

processor configuration criteria, during schedule synthetic load will be mapped to current

processor configuration available irrespective to the configuration specified during load

generation. ECL (Excessive cycle length) specifies extra cycles (exhausted) of allocated

processors in terms of each job execution. During job life cycle there may be a situation

arise where the processor allocated earlier is much more than required, this is because as

the job move towards their final stage of completion the parallelism may change. In this

case excessive cycle length will be computed. Although scheduler may obtain excessive

processors from such jobs and allocated them to next waiting jobs in the front end job

queue. This will provides the benefits that more no. of currently active list. But

readjustment during job completion end may be more costly because execution paused

and then restarted after demand adjustment. Otherwise if not obtained excessive

processors from within job’s execution life cycle, the ECL value may be high on each

time barrier. Up to this time this is the hypothetic view, further these scenarios will be

analyzed along with different scheduling schemes by above described parametric aspects

to decide which scheduling scheme is best suited on which situation.

Following are the simulated workload generation for various jobs:

15

Figure 2.3: Showing various Jobs characteristics

Figure 2.4: Number of jobs arrived simultaneously in a single Batch

16

Figure 2.5: Snapshot of a data produced during execution of jobs

2.3.1.2 Actual Work Load

Is a real time job which is running in the processor’s memory takes input stimuli and

Output stimuli? Such jobs utilizes CPU time, register for its operational task. Such tasks

have real time interaction along with system components and the user. Basically a

computation process in real code process consists of control flows basis on the

conditional expression, iterative flows, program sequence control in addition code

regeneration by compiler for performance efficiency.

2.3.2 Characterizing Moldable Parallel Jobs

Walfredo Cirne and Francine Berman (2001) outlined that the type of input given to the

supercomputer scheduler effects a lot on its performance. So it is important that before

evaluation of super computer scheduler the workload must be effectively reviewed. The

rigid parallel jobs require that they must be partitioned into fixed sizes in order to run

effectively. The moldable jobs which have the capability to run on a different number of

17

partitioned size have majority in certain kinds of jobs called parallel jobs. In this paper by

using good analytical models and based upon user survey a workload model for moldable

jobs is described. In order to develop a performance efficient strategies for the selection

of job partition size and for the enhancement of supercomputer scheduler the model

proposed by him can be directly applied.

Allen B. Downey in (1997) by observing a large number of parallel computers in the

Cornell theory centre and San Diego super computer centre developed a workload model.

This model helps us in checking the performance of various strategies while scheduling

the moldable jobs on a parallel systems having space sharing architecture. In his research

they reach to the conclusion that Adaptive static partitioning (ASP) which was supposed

to work in a effective manner for other workloads, is not performing very well compared

to the strategies that adapt the system load. The best strategy he considered one is that

helps in reducing allocations when high amount of load is there. [12]

J.T. Moscicki, M. Lamannaa, and M. Bubak (2012) shows that performance and

reliability of large grid infrastructures may suffer from large and unpredictable variations.

In this paper the impact of the job queuing time on processing of moldable tasks which

are commonly found in large-scale production grids has been studied. They use the mean

value and variance of make span as the quality of service indicators. The general task

processing model which provides a quantitative comparison between two models: early

and late job binding in a user-level overlay applied to the EGEE Grid infrastructure has

been developed. In this research, they find that the late-binding model effectively defines

a transformation of the distribution of makespan according to the Central Limit Theorem.

As demonstrated by Monte Carlo simulations using real job traces, this transformation

allows to substantially reducing the mean value and variance of makespan. For certain

classes of applications task granularity may be adjusted such that a speedup of an order of

magnitude or more may be achieved. He use this result to propose a general strategy for

managing access to resources and optimization of workload based on Ganga and DIANE

user-level overlay tools. Key features of this approach include: a late-binding scheduler,

an ability to interface to a wide range of distributed systems, an ability to extend and

18

customize the system to cover application-specific scheduling and processing patterns and

finally, ease of use and lightweight deployment in the user space. They discusses the

impact of this approach for some practical applications where efficient processing of

many tasks is required to solve scientific problems.[6]

2.4 Effective Scheduler Characteristics
They Salient Features of a effective scheduler are as follow:

i. Dynamic:-The scheduler must have capability to process the load changing in

processors as well as demand changing in execution of the given job set and

should be capable of providing the given amount resources in an effective manner.

ii. Effective resource Mapping – Effectiveness in terms of Resource mapping i.e.

effective mapping provides increased throughput as well as reduced task

adjustment efforts.

iii. Synchronized Thread- scheduler must ensure the synchronization of running

threads in network based communication flows, although simulation may also

require synchronization aspects but minimum as compare to network based

parallel designs.

iv. Transparency: - The transparency is in the terms of execution of the task either

from the local or remote. Same set of the results must be produced from local and

remote machine. The user must have ease of such a way that whether remote

execution is going on or local execution is going on. For developing such types

of facilities certain programming expects like RMI(Remote method invocation)

in JAVA is very helpful, where it seems to a user that local calling of a function

is going on but a function which has been called is actually existing on some

another machine.

v. Fairness: - It is concerned with the aspect that each demand must be fulfilled in a best

affective manner. So that the given amount of resources are effectively distributed among

various requirements. Further it is also as per the user requirement that a thread level or

process level fairness has to be provide. Depending upon whether to schedule large

number of jobs or earlier completion of lesser number of jobs is required.

vi. General purpose: - As different set of load can arrive comprising of different set of

applications like some can be real time jobs requiring space sharing scheduling, non

19

iterative batch jobs which might require time sharing scheduling. So scheduler must

provide up to some extent of the services for any type of job arriving in general.

20

Chapter3

Proposed Work

3.1 Problem Formulation
Parallel distribution of workload among the number of the processors is not only the task

through which we can achieve high performance but also regular management of

allocation of the processors to the large number of the job arrival is of also large

importance .In super computer systems there are sort of infinite job arrivals with varying

amount of requirements from system like number of processors, varying frequency of

processors requires, number of jobs to be run in a parallel, sequential way etc that is the

reason that a lot of adjustment effort is required to map processors space over job space.

Main problem arises because such required characteristics for each job is not available

and an efficient amount of dynamic parallel molding for requirements of jobs has to be

done in order to achieve high performance in terms of number of simultaneous execution

of jobs, more execution of the threads of a single job at a given time. Certain types of jobs

called moldable jobs can provide us the facilities such that we can change the

requirements of the job but these decisions has to be taken before the starting of the

execution of the job. The effectiveness will depend upon task adaptability structure and

the way the scheduler is assigning the resources. In the thesis three dynamic polices has

been discussed through which the effective resource management can be done in a better

way.

The main objectives of the thesis are:-

i. Distribution of jobs with efficient resource mapping.

ii. Managing throughput in terms of simultaneous thread/process execution.

iii. Achieving demand adjustment benefit by overlapping processor space to job

space.

iv. Adjusting clock speed variations before actual demand adjustment needs.

v. Considering effect of dynamic parallelism change during job execution life cycle.

21

3.2 Space sharing policy
Space sharing policy where each job may have more than one processor, single job

having multiple thread in action, distributed among two different processors for

simultaneous execution. This is necessary because sometimes multiple threads perform

inter-process communication, for achieving parallelism job scheduling requires multiple

processors in execution.

Figure 3.1: Showing space sharing policy in action

3.3 Demand Based Model for Moldable Scheduling
Parallel job workload involves multiple job arrivals consisting varying processing

demand, sometimes not fulfilled due to the current availability requires, adjustment as

described by below process model. Generally moldable or malleable structures are used

in schedulers, because in both cases, the demand adjustment is required. In moldable, the

scheduler performs the demand adjustment according to the current availability and no. of

tasks yet not allocated. The decision is in the hand of schedulers, performs resource

management. In malleable scheduling, the decision of demand adjustment is dynamically

performed but on the request of jobs, this decision is taken by job itself, although

adjustment is performed by scheduler or its intended component but after issuing the

request by job, demand may be decreased or increased as job request, schedulers

component will manage availability and demand requests, such jobs are malleable, job

controller has the functionality to manage processing demand for each of its running

22

thread as required. Rigid jobs are the fixed will not active in execution until demand

request fulfilled.

Figure 3.2: Showing Demand Based Model for Moldable Scheduling

Parallel Job arrival

Characterized work Load based
upon processor demand

Processor Space Manager

Processor Space and demand space

mapping

Demand fit controller

Managing Current Availability with
dynamic change in parallelism

Resource mapping corresponds to
need and offered

Controller adjusts the demand
mismatch in offered and required
space, processor frequency may

vary

Adjustments Scenarios

Adjustment can be on the basis of
complete batch or job by job basis

Parallelism surely will vary at each
job execution stage from initial to

final completion

Allocation can be immediate after
adjustment of each job regardless of

whether complete batch has been
taken for adjustment or a single job

Allocation Scenario

Dynamic Parallelism change

Effective managed space

Initial balancing and dynamic change
management will increase high

throughput and effective resource

23

3.4 Approaches to Demand Based Allocation Schemes
Several approaches have been developed, some of them are developed on the basis of

rigid based job characterization, other are on the bases of moldable and malleable demand

adjustment approaches. Selection of a particular approach will depend upon the current

availability and requirement currently ready for schedule. Most of the times adjustment is

required.

3.4.1 Strictly Demand Fit Allocation (SDF)

Scheduling decisions where processor demand for each job is fixed and allocated with as

much as processor required is a kind of strictly demand fit allocation (SDF). Purely a

static processor space division where a job is not executed until the required number of

processors are not available.

For each JID in FrontEndJobQueue
do ܵ݁݉݁ܦ_ݎݎݑܥ ݐ ← ݈݅ܽݒܣ_ݎݎݑܥ ݐ݁ܵ ሻܦܫܬሺ݀݊ܽ݉݁ܦ_ݎܲ_ݐ݁ܩ ← ሺ ሻݎ݈ܲ݅ܽݒܣ_ݐ݁ܩ

If Curr_Dem <= Curr_Avail then ܵ݁݁݀݋ܯݐሺ݁ݒ݅ݐܿܣ, ,ܦܫܬሺ݁ݐܽܿ݋݈݈ܣ ሻܦܫܬ ݈݅ܽݒܣ_ݎݎݑܥ ݐ݁ܵ ሻ݉݁ܦ_ݎݎݑܥ ← – ݈݅ܽݒܣ_ݎݎݑܥ ݉݁ܦ_ݎݎݑܥ
Set_AvailPr(Curr_Avail)

Else ܵ݁݁݀݋ܯݐሺܹܽ݅ݐ, ሻܦܫܬ

endif

 endfor

24

 no

Figure 3.3: Flow chart showing working of strictly Demand Fit Allocation (SDF)

Start

Curr_Avail← ሺݎ݈ܲ݅ܽݒܣ_ݐ݁ܩ ሻ

Curr_Dem <=
Curr_Avail

 (݉݁ܦ_ݎݎݑC,ܦܫܬ)݁ݐܽܿ݋݈݈ܣ
Set ݉݁ܦ_ݎݎݑܥ – ݈݅ܽݒܣ_ݎݎݑܥ ← ݈݅ܽݒܣ_ݎݎݑܥ

 (ܦܫܬ)݀݊ܽ݉݁ܦ_ݎܲ_ݐG݁ ← ݉݁ܦ_ݎݑܥ

SetModeሺWait, JIDሻ

Set JID ← Front_End_job_queue

Set JIndex←0

Set JIndex←JIndex+1

Processor Free
List Maintenance

thread

Monitoring Job
Completion and

dynamic parallelism,
change

Scheduler Continues monitoring Control

25

Figure 3.4: Showing Simulator status strictly Demand Fit Allocation (SDF)

5.2 Extreme-Ending Moldable Approach (EEMA)

Although the final job whose demand does not satisfy, can be moldable to adapt as much

as processor space available also referred to as EEMA (Extreme-Ending Moldable

Approach). Applicability of such scheduling schemes is only to those systems where

overall needed resource request is less than currently available resource limit. Following

is the distribution logic

For each JID in Front_End_JobQueue

do ܵ݁݉݁ܦ_ݎݎݑܥ ݐ ← ݈݅ܽݒܣ_ݎݎݑܥ ݐ݁ܵ ሻܦܫܬሺ݀݊ܽ݉݁ܦ_ݎܲ_ݐ݁ܩ ← ሺ ሻݎ݈ܲ݅ܽݒܣ_ݐ݁ܩ

If Curr_Dem <= Curr_Avail then ܵ݁݁݀݋ܯݐሺ݁ݒ݅ݐܿܣ, ,ܦܫܬሺ݁ݐܽܿ݋݈݈ܣ ሻܦܫܬ ݈݅ܽݒܣ_ݎݎݑܥ ݐ݁ܵ ሻ݉݁ܦ_ݎݎݑܥ ← – ݈݅ܽݒܣ_ݎݎݑܥ ݉݁ܦ_ݎݎݑܥ
Set_AvailPr(Curr_Avail)

26

else ܵ݁݁݀݋ܯ_ݐሺ݁ݒ݅ݐܿܣ, ,ܦܫܬሺ݀݊ܽ݉݁ܦ_ݎܲ_ݐ݁ܵ ሻܦܫܬ ,ܦܫܬሺ݁ݐܽܿ݋݈݈ܣ ሻ݈݅ܽݒܣ_ݎݎݑܥ ݈݅ܽݒܣ_ݎݎݑܥ ݐ݁ܵ ሻ݈݅ܽݒܣ_ݎݎݑܥ ← 0

Set_Avail(Curr_Avail)

endif

27

Figure 3.5: Flow chart showing working of Extreme-Ending Moldable Approach

(EEMA)

Set JIndex←0

 (݉݁ܦ_ݎݎݑC ,ܦܫܬ)݁ݐܽܿ݋݈݈ܣ
Set ݈݅ܽݒܣ_ݎݎݑܥ ݈݅ܽݒܣ_ݎݎݑܥ ← – ݉݁ܦ_ݎݎݑܥ

N0

Yes

Start

Curr_Avail=Total idle processors
currently available

 (ܦܫܬ)݀݊ܽ݉݁ܦ_ݎܲ_ݐG݁ ← ݉݁ܦ_ݎrݑܥ
(Current Processors Demand) Processor Free

List Maintenance

Set JID ← Front_End_job_queue Monitoring Job
Completion and

dynamic
parallelism, change

Set JIndex←JIndex+1

Is Curr_Dem
<= Curr_Avail

 (݈݅ܽݒܣ_ݎݎݑܥ ,ܦܫܬ) ݀݊ܽ݉݁ܦ_ݎܲ_ ݐ݁ܵ

݈݅ܽݒܣ_ݎݎݑܥ ݐ݁ܵ (݈݅ܽݒܣ_ ݎݎݑܥ ,ܦܫܬ) ݁ݐܽܿ݋݈݈ܣ ← 0

28

5.3 Moldable-Load Impact Demand Adjustment (M-LIDA)
Normally a parallel application is designed for a particular processor characteristics, onto

which when executed gives tremendous performance but usually architecture employed

for execution is not best satisfied to their configuration needs. So such applications are

required to adjust their processing demand based on POS (Processor offered space). In

other words jobs are converted to moldable while considering what is to be required and

what is to be offered. This scheme is referred to as a M-LIDA (Moldable-Load Impact

Demand Adjustment) i.e. present load of job and required configuration is adjusted to

offered processor space.

For each JID in Front_End_Job Queue

do ܵ݁݉݁ܦ_ݎݎݑܥ ݐ ← ݍ݁ݎܨ_ܮܹ_݊ݕܵ ݐ݁ܵ ሻܦܫܬሺ݀݊ܽ݉݁ܦ_ݎܲ_ݐ݁ܩ ← ݍ݁ݎܨ_ݎܲ_݈݅ܽݒܣ ݐ݁ܵ ሻܦܫܬሺݍ݁ݎܨ_ݎܲ_ݐ݁ܩ ← ሺሻݍ݁ݎܨ_Avail_ݎܲ_ݐ݁ܩ

݉݁ܦ_݆݀ܣ ݐ݁ܵ ൌ ൈ ݉݁ܦ_ݎݎݑܥ ݍ݁ݎܨ_ݎܲ_݈݅ܽݒܣݍ݁ݎܨ_ݎܲ_ܹ_݊ݕܵ

,ܦܫܬሺ݀݊ܽ݉݁ܦ_ݎܲ_݆݀ܣ_ݐ݁ܵ ሻ݉݁ܦ_݆݀ܣ

If Adj_Dem <= Curr_Avail then ܵ݁݁݀݋ܯݐሺ݁ݒ݅ݐܿܣ, ,ܦܫܬሺ݁ݐܽܿ݋݈݈ܣ ሻܦܫܬ ݈݅ܽݒܣ_ݎݎݑܥ ݐ݁ܵ ሻ݉݁ܦ_݆݀ܣ ← – ݈݅ܽݒܣ_ݎݎݑܥ ݉݁ܦ_݆݀ܣ
Set_AvailPr(Curr_Avail)

else ܵ݁݁݀݋ܯݐሺ݁ݒ݅ݐܿܣ, ,ܦܫܬሺ݁ݐܽܿ݋݈݈ܣ ሻܦܫܬ ݈݅ܽݒܣ_ݎݎݑܥ ݐ݁ܵ ሻ݈݅ܽݒܣ_ݎݎݑܥ ← 0

Set_Avail(Curr_Avail)

endif

endfor

29

Get_Pr_Demand is software routine for getting current demand of a specified JID.

Similarly Get_Avail_Pr computes no. of processor currently available till current

allocation barrier. Job can have either active or waiting status mode. Active status is

which is ready for dispatching after fulfilling all of its processing requirements. Allocate

and Set Avail routines corresponds to the job allocation and setting up available processor

space respectively. Demand of any job can be adjusted depending upon conditional

construct using Set_Pr_Demand. This routine is only executed during moldable

approaches. Synthetic workload as described virtually generated dummy job structures

based upon pre-determined processor frequency. Although such type of processors may

or may not be available during actual execution. Job demand can be adjusted based upon

synthetic and actual available processor frequency, above approaches defined on the basis

of space sharing policy mechanism. Allocation is performed on the basis of simultaneous

processing thread available for each job, and then the job space will be divided among

processor space.

30

Figure 3.6: Flow chart for working of Moldable-Load Impact Demand Adjustment (M-

LIDA)

NO

Yes

Curr_Avail = Curr_Avail + ݉݁ܦ_݆݀ܣ

Stop

Start

Curr_Avail =Total idle processors currently available

 (ܦܫܬ)݀݊ܽ݉݁ܦ_ݎܲ_ݐG݁ ← ݉݁ܦ_ݎrݑܥ
(Current Processors Demand)

 Required processor frequency for given JID ← ݍ݁ݎܨ_ܮܹ_ݕܵ

 Actual processing speed of given processor ← ݎܨ_ܲ_݈݅ܽݒܣ
available

 (Avail_P_Fr/(Sy_WL_P_Fr ∗ ݉݁ܦ_ݎݑܥ))݀݊ݑ݋ܴ = ݉݁ܦ_݀ܣ

Is Ad_Dem <=
Curr_Avail

ݎݎݑܥ ,ܦܫܬ) ݀݊ܽ݉݁ܦ_ݎܲ_ ݐ݁ܵ ݈݅ܽݒܣ)

݆݀ܣ – ݈݅ܽݒܣ_ݎݎݑܥ ← ݈݅ܽݒܣ_ݎݎݑܥ (݉݁ܦ_݆݀ܣ ,ܦܫܬ)݁ݐܽܿ݋݈݈ܣ ݉݁ܦ
Is processing
finished for a
given JID ?

ݎݎݑܥ ݐ݁ܵ (݈݅ܽݒܣ_ ݎݎݑܥ ,ܦܫܬ) ݁ݐܽܿ݋݈݈ܣ ݈݅ܽݒܣ ← 0

Continue processing

31

Figure 3.7: Showing Simulator status Moldable-Load Impact Demand Adjustment (M-

LIDA)

5.4 Proportionate Processor Width Partitioning (PWP)
Dynamic approach for processor allocation is usually applicable where (NOPA) no. of

processors available are less than the no. of processors required (NOPR) by a batch of

jobs. Simultaneously, occurred jobs will be grouped under batches. So ultimately the idea

is to allocate complete batch regardless of no. of jobs within that batch and their

respective demand. So availability should be best adjusted to currently ready batch even

the total batch demand is greater than the currently offered processor space. If processor

offered space POS is more than that of PRQ processor required space than any of the

above defined approaches can be employed but proportionate scheme is applicable to

batch oriented systems where POS is least than required, the best adjustment will be

performed. ݄ܶܿݐܽܤ_݉݁ܦ_݈ܽݐ݋௝ ൌ ∑ ௜୬௜ୀଵ݉݁ܦ_ܾ݋ܬ

Where jth is the batch. Proportionate scheduling will be applied only when following two

conditions are meet:-

32

a.) Current availability of processor should be less than or equal to total demand

required by the current batch.

b.) Also no. of available jobs in the batch must be less than or equal to current

availability of processors.

Otherwise if the current availability is more you can employ any of the above defined

policy than proportionate. Basic idea is to active complete batch with best processor

managed space.

௜,௝݉݁ܦ݆݀ܣ ൌ ෎ CInt ቆ݉݁ܦݐݏ݅ݔܧ୧,୨ ∗ ௝ቇ௡݄ܿݐܽܤ_݉݁ܦ_݈ܽݐ݋݈ܶ݅ܽݒܣ_݈ܽݐ݋ܶ
௜ୀଵ

In this case demand of ith job in jth batch will be adjusted. This process is performed for

each job in the batch at once. During each adjustment total availability as well as total

batch demand will be changed.

33

Figure 3.8: Flow chart for working of Proportionate Processor Width Partitioning (PWP)

Start

Set BID ← 0

Total_Batch_݉݁ܦ ← G݁ݐ_BID_݀݊ܽ݉݁ܦ()

Adj_Batch_Demand(Proc_FreqAvail, BID)

Tot_Batch_݉݁ܦ <=
Curr_Avail

AND
Not (N >

Curr_Avail_Proc)

Schedule as
MLIDA

Total_JobsBID
<=

Curr Avail Proc

BID=BID+1

Curr_Avail← ሺݎ݈ܲ݅ܽݒܣ_ݐ݁ܩ ሻ Processor Free List
Maintenance threads

Monitoring Job
Completion and

dynamic parallelism,

෎ ௜,஻ூ஽݉݁ܦ݆݀ܣ ൌ CInt ൭݉݁ܦݐݏ݅ݔܧ୧,BID ∗ ஽௘௠ಳೌ೟೎೓ೕ൱௡݈ܽݐ݋஺௩௔௜௟݈ܶܽݐ݋ܶ
௜ୀଵ , Allocate ሺi, BIDሻ

Adjust _Processor_Demand(ith job in batch BID) with formula

Wait for Current
Availability

34

3.4 Demand Adjustment Benefits
Benefits for demand adjustment in (M-LIDA) before allocation provides tremendous run-

time change in ongoing parallelism. Other policy structures, where major motivation is on

allocation without considering resource adjustment mapping against given load are

follows static aspects of workload assignment. Executes jobs only when corresponding

required resource configuration is available. Advantage of resource/demand adjustment

(lower to higher frequency) against given load leads to the increased no. of currently

active scheduling jobs, increases PLP (Process Level Parallelism). Another advantage of

demand adjustment policies irrespective to frequency adjustment, If the processor offered

space (POS) is available more in comparison to previously executed scenario ultimately

the currently active jobs will also increases. So in demand adjustment either the POS

value is increased or higher frequency processors are available than synthetic one, the

result will be increased no. of active job as described in fig-3.10. However, in demand

adjustment if lower frequency processors are available than required the result will be

increase in job’s demand and ultimately the currently active list will be dependent upon

POS value available as shown in the fig–3.10. For example if synthetic workload

processor frequency is of 2.0 Ghz and the system has only 20 (POS) processors available

of 1Ghz each. Now if a job occurred having demand 5 ultimately during adjustment his

demand will be adjusted to 10 leading to occupying half of the POS space. So

automatically affected to currently active jobs sets i.e. decreased Process level parallelism

(PLP). Despite of this, where demand adjustment against load with respect to running

processor frequency is not considered, currently active jobs will be increased only when

processor offered space is increased rather than their frequency clock as described in

Figure 3.9. Also these policies leads to higher Excessive cycle length (processor cycle

wastage) as compare to demand adjustment policies described later.

35

Figure 3.9: Currently Active Jobs in SDF

As in the above graph, Strictly Demand Fit policy has been applied, as the no. of

processor increased without increase in the processor frequency, the currently active jobs

are more. This provides the benefits over increase in frequency, so no matter what the

speed of the processor is – only the key issue is how much POS (processor offered space)

is. But in load adjustment policy (M-LIDA) where either frequency is increased or POS

value is increased, the currently jobs set is increased automatically. Because after load

adjustment, POS value will be more than PRS (processor required space).

Figure 3.10: Currently Active Jobs in M-LIDA with POS-20

36

3.5 Run Time Demand Adjustments
During each periodic time barrier, Load adjustment scheduler Performs monitoring each

job’s remaining scheduling cycles with respect to no. of processor allocated and their

respective frequency. If possible the demand will be adjusted; there are two cases of this

dynamic demand change management. If the processors are allocated approximately near

to the required demand like in M-LIDA, the demand will decreases during further

completion stages, there is no case available in which demand will increases. Another

case, which is occurred in proportionate allocation where demand is already set to

minimum calculated threshold, so in this case the demand might increase or decrease

during further adjustment. Following is the formal method for dynamic demand change

management.

௜݉݁ܦ݆݀ܣ ൌ ෎ Round ൬ ܴܴ݈݁݉݁݉ܿݕܥ ୧݁݋݈݈ܣ_Pr _ݍݎܨ ൰஺௖௧_ொ௨௘_௅௘௡௚௧௛
௜ୀଵ

37

Chapter-4

 Results and Discussion

4.1 Parameters under consideration
Simulation produced while considering above defined policies takes synthetic workload

as input. Several parameters have been studied and considered for constructing

illustrations. Factors and their respective detail is as follows-

i. Currently Active Jobs: This parameter defines currently active jobs by managing

current processor availability. If more no. of currently active job running, then

process level parallelism will be increased i.e frequent response from the system

to many no. of parallel users.

ii. Excessive Cycle Length (ECL): This parametric value defines processor

allocated in excess than required. As the job reduces its burst during its execution

life cycle its processor requirement will be reduced. As the job execution life

cycle reaches at its final stage, the length of ECL will increase. Although,

processor demand can be changed to current required but at final stage adjusting

demand will be more costly than continuous execution with the previous

allocation. Changing job demand will pause its execution. Time consumed for

adjustment might be more expensive than consumed with previous defined

allocation. There may be the possibility that job’s final execution level will be

completed within that time. For example:

• Suppose a particular job requires 5 processor of frequency 2.8 Ghz with

CPU burst 148674578647 .But available processors are of 3.8 Ghz

Total number of cycles available= 3.8*109 *5=19000000000

ECL=19000000000-14867457867=4132542133

This is the amount of excessive cycle wastage which has occurred as the available

processor is of higher frequency (3.8) than the required frequency (2.8) and we

did not calculate the actual requirement based upon different configuration

available. In the thesis based upon the different policies discussed, the ECL is

38

calculated. ECL for SDF came to be maximum in case of EEMA and minimum

for PWP.

Figure 4.1: Excessive cycle Length

iii. Overall Execution End Time (OEET): This parameter defines the maximum

simulation time (sec) to compute given no. of batches. Although this parameters is

a static one because if the requirement is to manage processor offered space along

with increased currently active job set, then this factor may increase overall

simulation time.

iv. Total N–Scheduled Job: Total no. of scheduled jobs up to a given time barrier is

another factor to evaluate simulation efficiency in terms of throughput. This will

combine no. of completed jobs along with no. of currently active jobs.

v. Processor Utilization Per Process: This term can be defined as processor

managed space at process level/thread level. If the thread level parallelism is

increased more no. of processors are allocated to single active job to handle MSPT

(multiple simultaneous processing threads). Ultimately the current active job set

will be decreased. Performing best processor space management jobs are

converted to moldable/malleable structure [9] [10], this will increase process level

parallelism.

39

vi. No. of Completed Jobs – This term can be defined as actual throughput obtained

at any given timer barrier. Only no. of completed jobs are evaluated at each timer

barrier as-

Total_ݏܾ݋ܬ_݌݉݋ܥ ൌ ݄݀݁ܿܵ_ܰ_݈ܽݐ݋ܶ െ ݏܾ݋ܬ _ݐܿܣ_ݎݎݑܥ

4.2 Experimental Setup
Simulation based proposed implementation is developed using Visual Basic Studio 6.0 in

order to evaluate the proposed moldable scheduling algorithms under various

constraints/parameters. Most of the cases the simulation modelling can provide us more

generalized results which are most promising as compared to actual implementation on

hardware. Further the evaluation of algorithms over a broad range of characterization like

changing number of processor requirements of each job, varying processor frequency for

each job, varying CPU burst time for each job etc. Job queues associated with the

logically programmed virtual processors are used in order to implement various

scheduling policies. The simulation environment consists of synchronized communication

using various thread timers controls available in language. The setup consists of number

of batches arrived using random distribution covering workload aspects such as unique

Batch_ID, each Batch_Id consists of its associated job list having unique Job_Id, CPU

cycle burst required, processor demand etc. CPU burst cycle specifies the length of

execution of a particular job. As the cycle length increases the amount of time of

execution will also increases. The cycle capacity of each processor will vary according to

the operational clock frequency of that particular processor. Characteristics of the

simulation environment:-

i. Graphical user interface: It helps in ease to use and understanding of how the

things are working in a user friendly manner.

ii. Different menus: The simulator has different buttons for different purposes like

generation of the work load with required number of processors, various

frequency selection options through drop down list. There is also an option

through which we can clear the entire database with just a single click. So that

any inconsistency during data collection can be avoided. For taking snapshot of

the database at a particular time there is also Start/Stop button.

40

iii. Data storage: Data generated by applying various policies is stored in MS-

Access.

iv. Status Window: It tells the current status of the simulator.

v. Various checkboxes drop down lists, text boxes: All these toolkits helps in

giving inputs, data capturing generated during the execution.

vi. Performance measurement during execution:-The text boxes for simulation

start time, end time, excessive cycle length etc. helps in measuring run time status

at various intervals.

Figure 4.2: Showing layout of load generation

Figure 4.3: Showing different components of simulator

41

4.3 Illustrations
In case of M-LIDA frequency of processor is increased or decreased rather than their POS

value (20), results are better than in SDF policy allocation. In case of SDF results are

better only when POS value i.e. 20 to 30 is adjusted. No efficient effect seems to display

when frequency is increased in SDF. In spite of this, the results are also better when POS

space value is increased in M-LIDA rather than frequency as described in figure below

Figure 4.4: Currently Active Jobs in M-LIDA with POS-30.

In proportionate processor width partitioning scheme, POS space will be managed as

minimum as possible so always increase in currently active list, although delay may be in

final job completion. So ultimately whole simulation will end by consuming much of the

time than other policy execution as describe in the below illustrations.

42

Figure 4.5: PLP (Process Level Parallelism) - in PWP.

Consider the above PWP proportionate processor width partitioning graph for currently

active job. The policy will have long execution cycle. Although currently active job set

will be increased leading to more process-level parallelism as compare to thread level

parallelism. This also leads to more delay within overall execution completion i.e. jobs

completion time will be more. This is because the processors are allocated less as

compare to requested demand. The current state of affairs shows that policy is applicable

where focus is on increased multiple user response required i.e. more no. of users are

responded at given time barrier. Process level parallelism also takes care of job’s

initiation time i.e. jobs are invoked earlier even with less processor scheduled as required.

Further illustrations describe demand adjustment gives benefits to where exact mapping

of required resources is not performed. The Figure 4.7 to Figure 4.10 exhibits as the

frequency is adjusted from lower to higher the result will be better in M- LIDA. Despite

of this, if frequency is adjusted from higher to lower then the resource demand will be

increased per process, PLP will be decreased as described and thread level parallelism

will be increased. Total No. of Completed Jobs considered as a key factor of measuring

overall performance in terms of throughput at particular barrier time. Further, the analysis

produces throughput effect attained by each of the scheduling structure.

43

Figure 4.6: Overall Execution End Time

Below are the variation graphs captured at different processor frequency available.

Ultimate idea behind this is to illustrate process level parallelism i.e. more currently

active jobs. The graphs produced described different policy sets corresponding to discrete

processor frequency. Although increased currently active set does not lead to more no. of

completed jobs.

Figure 4.7: PLP (Process Level Parallelism)-2.8 GHz to 1.0 GHz.

This is because as more as the processor managed space, delay in final job completion

time end as described above in figure 4.6.

44

Figure 4.8: PLP (Process Level Parallelism)-2.8 Ghz to 2.0 Ghz.

Excessive cycle length is computed in terms of wastage i.e. extra processor allocated. Processor

once allocated if not adjusted due to parallelism change will lead to ECL. M-LIDA Policy

structure always monitors ongoing parallelism change and allocated the processor as required by

corresponding load remaining. This is required to schedule next batch as earlier as possible

without incorporating delay as much as possible.

Figure 4.9: PLP (Process Level Parallelism)-2.8 GHz to 2.8 GHz.

45

Figure 4.10: PLP (Process Level Parallelism)- 2.8 GHz to 3.4 GHz.

Figure 4.11: PLP (Process Level Parallelism)- 2.8 GHz to 3.8 GHz.

Figure 4.12: Throughput– 2.8 Ghz to 1.0 Ghz.

46

As described if frequency is adjusted from higher to lower, overall end timer barrier will be more

in each of the policy.

Figure 4.13: Throughput– 2.8 GHz to 2.0 GHz.

No. of completed jobs calculated cumulatively at each barrier is also less as compare to

scenarios captured from lower to higher frequency. Policy structures SDF and EEMA

where PLP status is less as compare to PWP policy mechanism i.e. TLP thread level

parallelism is more in SDF and EEMA, also throughput is more than PWP. These are

demand promising approaches i.e. more prone to demand satisfaction.

Figure 4.14: Throughput– 2.8 GHz to 2.8 GHz.

In M-LIDA the demand will be adjusted to current need of the job, so remaining allocated

processors are placed into free list and are scheduled to next incoming jobs. So ultimately

overall end time will be shorter in any case as compare to other, also throughput will be

more in all the cases illustrated.

47

Figure 4.15: Throughput– 2.8 Ghz to 3.4 Ghz.

Consider PWP division where processors are allocated earlier as minimum as possible,

later on demand of some jobs might be increased depending upon the processor

availability, if decreased will be beneficial and POS space will be more in that case. Two

conditions must be met to schedule a complete batch in PWP. Otherwise the remaining

POS will be adjusted to currently active jobs to fulfill their processing deeds. This will

make delay in next batch allocation

Figure 4.16: Throughput– 2.8 GHz to 3.8 GHz.

The produced illustrations exhibits that for better processor managed space (PMS),

demand adjustment is required. Consider PWP where small no. of total jobs are

completed against each time barrier as compare to other policy mechanisms, although

48

PWS has more currently active set. So more number of active jobs produces delay in

overall completion as well as delay in average completion time of each job.

TLP (Thread Level parallelism) in M-LIDA is also very close as compare to demand

promising jobs, this is because demand is adjusted depending upon the required cycle

burst, demand may be increased or decreased corresponding to the current configuration

available. Now ECL excessive cycle length will be demonstrated in further produced

illustrations.ECL list is more in demand promising jobs, because focus is on satisfying

best possible allocation to each job wherever possible, because of no consideration of

processors dynamic characteristics i.e. speed corresponding to job demand

49

Chapter 5

Conclusions

5.1 Conclusion
Described Illustrations exhibits that M-LIDA and PWP policy mechanism will be best in

processor managed space (POS). In addition ECL list is minimum along with

incorporating demand promising model (DPM) in M-LIDA. However for increased PLP

and minimum priority for overall completion time PWP will be best. The idea behind this

implementation research is because in realty there will be a mismatch in required space

and available space. So execution over discrete frequency sample provides best selection

for real time infinite job execution. Extremely end moldable job will be best that SDF,

small amount of change in the logic. At the end, when processor availability does not

satisfy the job demand, job will be converted to moldable by allocating as much as

processor space available. This will lead to more execution at each time barrier i.e. (n+1)

jobs are allocated as compare to SDF. ECL wastage in M-LIDA is due to the final end of

the job execution where only single processor allocated and remaining left cycle of job is

less than the frequency of that processor. In PWP processors are allocated as minimum as

possible so job burst cycles are mostly greater than the frequency of allocated no. of

processor of the job. So produces delay in reaching final job’s completion end. In addition

ECL produces as less as compare to other policy mechanism with a longer length.

Following is the behavioural analysis described along with various policies parameters:

50

Table 4.1:-Showing Summarize behaviour of various parameters for various Schemes

5.2 Future Work
Future work will contain other dynamic policy methods to incorporate best processor

managed space i.e. possibly more no. of parallel jobs with increased throughput as well as

less excessive processor allocation. Usually the parallel jobs itself describes its processing

demands i.e. no. of processor required. However this factor doesn’t remains constant

throughout the jobs execution life cycle. So there should be a mechanism to detect job’s

processing deeds by the scheduler itself, one approach to automatic detection of the job

demand is based upon the DAT (Directed Acyclic Tree). Each job processes its execution

with in a no. of phases. Ultimately a phase driven behaviour with in a parallel job

execution model Parallel job driven model encompasses no. of thread to work out within

a cooperative environment. So initially, during the earlier phases of job execution life

cycle the no. of child threads encompasses are very less. As the phases completes towards

51

their final attempt the no. of threads within each phase will vary so demand will be

automatically identified by the scheduler. Further the cluster grid computing can be

employed to evaluate performance of parallel algorithms. Network Architecture will

behave like a parallel cluster for high data and computation intensive work, future study

may incorporate cluster base experimentation. MPI based parallel interfaces are included

for communicating control messages [10] [11]. PVM may be employed for parallel

control constructs to for grid computing, cluster interconnection may designed for a

particular set of application however load may be balanced among clusters for

synchronizing .

52

References

[1] Sudha Srinivasan Savitha Krishnamoorthy P. Sadayappan, The Ohio State University,

Columbus.A Robust Scheduling Strategy for Moldable Scheduling of Parallel Jobs.

Proceedings of the IEEE International Conference on Cluster Computing

[2] Walfredo Cirne, Francine Berman. A Model for Moldable Supercomputer Jobs 2001

ACM Transactions, IPDS International Parallel & Distributed Processing Symposium.

PP-59.

[3] Klaus Jansen Institut for Informatik, University zu Kiel. A (3/2+ε). Approximation

Algorithm for Scheduling. SPAA’12, June , 2012, Pittsburgh, Pennsylvania, USA.

[4] Steven Hofmeyr, Costin Iancu Filip,Blagojevic. Load Balancing on Speed. Lawrence

Berkeley National Laboratory. PPoPP’10, January , 2010, Bangalore, India.ACM

[5] Yves Caniou,Ghislain Charrier, Frederic Desprez. Evaluation of Reallocation

Heuristics for Moldable Tasks in, 9th Australian Symposium on Parallel and

Distributed Computing (AusPDC 2011), Perth, Australia.

[6] J.T. Moscicki, M. Lamannaa, M. Bubak, P.M.A. Sloot Processing moldable tasks on

the grid: Late job binding with lightweight user-level overlay,

www.elsevier.com/locate/fgcs, Feb 2011.

[7] Vignesh T. Ravi, Michela Becchi, Wei Jiang, Gagan Agrawal, Srimat Chakradhar

Scheduling concurrent applications on a cluster of CPU-GPU nodes, July 2013.

[8] M. Etinski, J. Corbalan, J. Labarta, M. Valero.Parallel job scheduling for power

constrained HPC systems, Sept 2012.

[9] Walfredo Cirne Francine Berman Using Moldability to Improve the Performance of

Supercomputer Jobs. 2002 Elsevier Science.

[10] Erik Saule, Doruk Bozdaga, Ümit V. Çatalyürek Optimizing the stretch of

independent tasks on a cluster: From sequential tasks to moldable tasks. January 2012.

[11] Gladys Utrera, Julita Corbalán, Jesús Labarta. Implementing Malleability on MPI

Jobs 13th International Conference on Parallel Architecture and Compilation

Techniques (PACT’04).

53

[12] Allen B. Downey, A parallel workload model and its implications for processor

allocation, University of California at Berkeley and San Diego Supercomputer Center

(1997).

[13] Ligang He, Stephen A. Jarvis, Daniel P. Spooner, Xinuo Chen and Graham R. Nudd

Dynamic Scheduling of Parallel Jobs with QoS Demands in Multiclusters and Grids

IEEE/ACM International Workshop on Grid Computing (GRID’04)

[14] Amit Chhabra, Gurvinder Singh and Gaurav Kumar, Simulated performance

analysis of multiprocessor Dynamic space sharing Scheduling policies, International

Journal of Computer Science and Network Security [2009].

