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Abstract

Workload distribution among processors is one sided task. Whereas consistent
management of processor availability to bulk job arrival is an aspect of resource
management. Parallel systems where high probability of infinite job arrivals with
varying processor demand requires a lot of  adjustment efforts to map processors
space over job space .Each job has different required characteristics like no. of
processors etc. But the number of available resources is of different characteristics.
Particular characteristic processor demanded by a job usually is not available. Such
case scenarios are then adjusted to adapt moldable parallel characteristics. Rigid based
approaches considered as static demand fit allocation schemes where the job is
considered to be active task only when scheduler satisfied the processor demand.
Current research focuses on demand adjustment schemes by considering synthetically
generated work load and processor availability map with discrete clock frequency.
[llustrations produced on the basis of simulation study about demand adjustment
schemes consisting static and dynamic approaches with the aim of consistent
processor availability fit i.e. processor offered space. Idea behind such experimental
study is to analyze various scheduling algorithms along with different performance

parameters managing best processor space.
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Chapter 1

Introduction

1.1 Introduction

Parallel application logic designed on the basis of demand oriented workload structure,
where workloads are characterized in terms of number of processor required, decisions
for appropriate processing demand will be considered either by number of simultaneous
processing threads in a job structure or number of partitioned data sets available. Former
specifies control parallel aspects of computation whereas later specifies data parallel
aspects of computation. Managing demand based workload in a high data intensive
system where infinite job arrival is a very tricky task, because the probability of lesser
number of processor available than total demanding needs of the waiting data set is
generally high so need of demand adjustable schemes considered as future trend in
processor scheduling. Rigid based application structures can be easily executed on
systems having bulk of processor offered space (POS) available. Moldable approaches
where scheduler takes the decision to map processor available space to job demanding
space. The success of such schedulers is dependent upon task adaptability structure (TAS)
i.e. capability of task to modify its logical structure to adapt current scenario change. A
moldable job can run with any number of processors, within certain range and leaves the
decision to the scheduler for parallelism change. The constraint is that only scheduler can
decide during runtime the resources can  be changed or not but job itself cannot.
Resources adjusted at program start, such jobs are moldable. Although, scheduler can
manage dynamic change in parallelism at run time (increase or decrease in job demand
during execution) despite of this, ongoing parallelism change from jobs perspective is
another aspect of task adjustment where tremendous parallelism change in task execution
life cycle exists. Jobs which give us the facility of changing the assigned number of
resources itself during run time are called malleable jobs. This scheduling is also known a
dynamic partitioning. In general parallel jobs provide simultaneous control/data driven
modules. In moldable structure where one to one mapping is not possible, how a large

scheduling thread will be mapped to minimum possible resource available? The solution



to such mapped driven process is to compute computation size of each and every thread
of a task and then estimate clock burst of each available processor in one unit time. Now
the threads are grouped together corresponding to their collaborate execution cycle and
available processor cycle speed. Two or more threads may be given to single individual
processor capable to handle intended computation in multitasked concurrent operation, i.e
threads are grouped together respective to the processors clock capacity and executed

along with context switching.

1.2Parallel and Distribution System

Parallel computing, as the name suggests is an efficient form of computing capable to
execute more than events simultaneously or concurrently with the use of multiple
processing units. The processing units may be either a complete CPU (Central Processing
Unit) or it can be structured as a multiple ALU’s (Arithmetic & Logical Unit) under the
control of a common control unit. The idea behind the invention is because of the
principal that larger problems can be solved quickly if divided into smaller units and
distributed amount to the multiple processing units. Parallel computing programs or
algorithms are more difficult to write than sequential ones because now behaviour of the
algorithm involves concurrency and this will introduces several new classes of bugs of
which race conditions are most common. Parallel computing also not suitable for
applications where high amount of dependencies are involved .In such cases the
application threads may delay its execution till obtaining the result of its other
cooperative threads involved for the production of final outcome .Race condition is
nothing but uncertain programming exceptions , which produces unpredictable program
state and behaviour due to un-synchronized concurrent events. Race condition originates
because of unintentional software coding by programmers .Race condition are hard to
find with the conventional debugging methods and tools and requires much of the
experience from programmer side. It is an important guideline for the programmer aware
of such land mines, which are the strong obstacles into the growth before entering into the
dangerous parallel programming zone. The most often race condition are data race
conditions, a data race conditions caused due to the simultaneous access on the same

memory location.



1.3 Degree of Parallelism

Degree of parallelism can be defined as the maximum event up to which the application

can achieve parallelism. No. of levels have been defined and each of which having

improved degree of parallelism .Moving one level to another will provide more fine

grained parallelism.

1.

ii.

iil.

1v.

Job or Program level:

Job level parallelism as the name suggests where multiple
programs/process is executed parallel among various processing elements.
This is the highest level of parallelism and usually implemented
algorithmically.

Procedure Level:

Next highest level of parallelism is the procedure level. Where multiple
modules of functions of the application or algorithm will be executed
parallel. This type of parallelism will also dependent upon the modular
structure of the program.

Inter - Instruction Level:

Next fine grained parallelism level is inter instruction level in this type of
parallelism procedures or modules further partitioned among various
instructions which are then executed parallel because procedures are self
contained block of code which must be written in such a way to achieve
parallelism. Data dependency will be more in such types of parallelism .So
there might be possible of instruction execution delay.

Intra - Instruction Level:

The last and the highest degree of parallelism is Intra —Instruction level
where the instruction is further divided into instruction segments, which
are then solved parallel. This type of parallelism requires much of the
programming experience and also having high degree of data dependency
a compare to previous one. Synchronization, coordination instruction final

composition are more difficult.



1.3 Parallel Computing Environments
Various parallel computing environments have been researched based upon various
taxonomies:-
i. Array Processor:
Array Processors are the machines having two or more ALU’s under the
control of a single control unit. These types of systems are capable to perform
single instruction multiple data streams. The control unit sends the same
instruction to all Processing elements which then performs those similar
operations over different parts of the problem.
ii. Multiprocessor System:
Multiprocessor System is the system having two or more Central Processing
Units. These are the rue parallel system having the capability to perform
parallel computation within a single system. Multi- core processor or chip
level processing is now the most common type of parallel computers .Such
type of systems are composed of two or more independent core or (CPU’s).
The cores are typically integrated onto a single integrated circuit die known as
a chip multiprocessing or CMP.
iii. Multi Computer System:
Contrasting with multiprocessor, Multi Computers on the other hand are
collection of standalone computers connected to form a network. Such
systems are also referred to as massively distribute parallel systems.
Programming such type of systems are more difficult because synchronization
, message passing overheads like sending , accepting, interpreting messages

require much of the programming efforts.

1.5 Parallel Job Characterization
1.5.1 Rigid Jobs
Parallel jobs that has the capability to execute on a given separation size are called rigid

jobs. A real-world job log contains information about scheduling of jobs submitted to a



supercomputer over a period of time. For each job scheduled on the system, the

information found in a job log generally includes:-

1. The job identification number,
. Submission time,
1ii. Commence time,
1v. End time,

V. Allocated amount of processors,
vi. Requested maximum time,

vii. Memory needed, Used CPU hours.
All these decisions are taken by the scheduler itself. Such kind of job will not start until
the exact requirement of a job is fulfilled, as a result it can lead to the inefficient resource

utilization and degradation in the efficiency can occur.

1.5.2 Moldable Job

When the number of resources is adjustable during the execution then the job is called
moldable. These types of jobs within in specific range can run can run on any number of
processor. To evaluate moldable task scheduling policy, in addition to the particulars

presented in rigid-scheduling job logs, the following further particulars are required for

each job:
1. Choice of processor requirements.
ii. Approximate implementation times matching to the process
iii. Scalability Information.

Number of parallel programming techniques like PVM, MPI is there which before starting
the execution will ask the user for the number of processors requirements on which the
task has to run. Further extending this in MPI-2, the user can change the number of
resources assigned as per requirement during execution time. Thus MPI-2 supports
effectively the concept of malleable jobs which will be discussed in the next section. The
moldable jobs can also said to be monotonic if allocation of more resources results in

decreasing the execution time and increasing the throughput.



1.5.3 Malleable Jobs
When the jobs give us the flexibility of changing the number of the assigned resources
during its execution then such jobs are known as malleable jobs. Such a kind of

scheduling is also known as dynamic partitioning.

1.6 Developing and Analyzing Parallel System

1.6.1 Cluster Based parallel Programming:-

The cluster based processing can be performed through Sockets, RMI :-

1.6.1.1 Socket Based MPI Communication
End points for communication are defined as Socket. For the purpose of communication
in sockets the client server model is used. It is a mixture of a protocol which defines a
type of service on the network, the port number, IP address. IP address/Host Name a
unique IP address is used for communication. It is of 32 bit specified with four Octets. It
is as per the format of IP v4. The advanced communication has provided us the IP address
of 128 bits in IP v6 format. Further classification has been done in the form of classes A,
B, C, D etc. We can also use a virtual name known as host name for the sake of
simplicity. But at the machine level the way in which the communication is done it is
with the help of MAC (Media Access Control 48 bit NIC address).
a. Port Numbers
In order to uniquely identify a particular service running on some machine a port
number is used. After the connection has been made through which data can be
send and receive the port number helps in uniquely identifying it.
b. Socket Protocol
The mode through which communication has to be done like TCP or UDP it is
defined through the socket protocol. The reliable connection services are provided

by the TCP and unreliable but a very fast communication is provided by the UDP.



The Key Notes during socket programming are as follow:

1.

1l
iil.

1v.

A unique port number and communication protocol must be defined by the server
side socket.

Remote host IP, port protocol has to be defined by the socket.

The port number has to be greater than 1024

During connection making process no two or network application should have

same port number.

1.6.1.2 RMI Based RPC implementation

1.

1l

iil.

Application Layer:-The actual implementation of client and server takes place at
the application layer. An interface that extends java.rmi.Remote must declare
number methods. With the help of this interface the client can access these remote
methods. The methods which are defined in the one or more interfaces which is
extending the java. rmi. Remote interface can be remotely invoked. And at the last
the RMI registry is used in order to register the application. Through RMI registry
remote object’s reference can be get by the client.

Proxy Layer: - The stub and skelton at the client and the server respectively are
defined at this layer. The remote object’s proxy is acted by the stub at the client
machine. Similarly for the remote object’s proxy at server side is acted by the
skelton. Getting the stream of bytes from the Java’s byte code is known as
Marshalling and it is done by the stub. Similarly the reverse process of getting the
byte code is known as Unmarshalling. Due to the stub and the skelton which
forms the communication link between the client and remote objects it appears to
the client that remote objects is within the JVM(Java Virtual Machine). The rmic
compiler creates stub and skelton.

Remote Reference layer: - In order to provide the abstraction between the stub
and the skelton the remote reference layer is used. A stream oriented connection is
made for the data provided by this layer at the transport layer. For the purpose of

recovery of lost connection the remote reference layer provides the way out.



iv.  Transport Layer: - The actual transmission from one machine to another
machine in the form of electric signal is done by the transport layer. A stream is
created through which sending and receiving of data from one machine to another
is accessed by the remote reference layer. Establishing the connection, managing

the connection and monitoring are the main tasks of this layer.

Java Virtual Machine Java Virtual Machine

Client Application Application Layer Server Application

Y Y \j Y

Remote Reference Layer

A J

Remote Reference Layer

Transport Layer Transport Layer

F 3

Figure 1.1: Basic architecture of Java RMI

1.6.2 Mathematical Model (Formal specifications)

Formal specification comes under the descriptive design theory using mathematical
notations .The purpose of applying formal methods is to perform pre-analysis of software
design statements as well as research under observations which may act as benchmark for
future implementation. The design statements usually involves mathematical model to
elaborate pseudo codes, algebraic specifications, verification, validation design aspects.
During development mathematical models are constructed to achieve accurate maturity
process. This will provide error free specification analysis in earlier phases of software
development. Formal specification methods can be applied in any development
segment/phase. Such methods include boolean logic, set theory, qualitative and
quantitative variable description. These are written with sound mathematics whose syntax

and semantics are formally defined and justified. Such mathematical terms could be



successful to represent theoretical aspects in an analytical form. Results could be

observed using these mathematical justifications.
Symbolic notations like as-

Actors activity Where Activity 2Funl J Fun?... ....

V x: P(x) means P(x) is true for all x.

VneEN:n*>n
1.6.2 Simulation based experimental studies

Simulation via programmatically designed under some formulated observations of
applied research. Such techniques usually come under immediate action research to
justify the problem statement via implementation logic. Standard notations are available
for asymptotic comparison i.e. standard graphical curves are compared with simulated
captured result formulization. After deterministic analysis and justifications immediate

action implementation continues to estimate.



Chapter2

Literature Review

2.1 Parallel Computing Models

Traditionally a serial computation involving single core processor is basically a sequential
execution. Micro operations are executed one by one along with garbage collection of
various CPU registers. This will be required to start immediate next operation occurred in
the instruction. So, the delay in instruction execution, results in parallel computation
model. Therefore, the various parallel computing models used in simultaneous and

concurrent processing are as follows:
Generalized parallel computing model:

e Synchronous PRAM.
e Asynchronous PRAM.

Flynn’s Computation Model:

e SISD

e SIMD
e MISD
e MIMD

2.2 Parallel Scheduling

The different number of ways in which we can assign number of processors to various
numbers of jobs for simultaneous execution is known as parallel scheduling. There are
various manners through which we can implement parallel scheduling, depending upon
static policies, dynamic policies, time sharing, space sharing etc. It is discussed in the
next section [14].

2.2.1 Types of Scheduling

The scheduling techniques can be broadly specified as:-

10
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bv the Scheduler

\
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Scheduling
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Figure 2.1: Showing ways of scheduling Processors

2.2.2 Static scheduling:

In this type of scheduling once the processor allocation has done, the allocated processors

are not reclaimed until the job finishes. This type of allocation can result in ineffective

utilization of the system capabilities because of the variations among the system work

load .The snapshot of such a database is shown below we can see that each job is having

different processor requirements in terms of frequencies, number of processors, CPU

burst cycle etc. If for such kind of jobs the static allocation is done then different types of

performance factors like excessive cycle length, number of jobs completed per unit time,

number of jobs concurrently running per unit time may not be in favour of the user.

11



2.2.1.1 Fair-share scheduling: In this type of scheduling the usage of the CPU is equally
distributed among number of co-ordinating parties. For uniprocessor system number of
simultaneously arrived jobs are fairly portioned corresponds to the CPU time
computation. In parallel system where number of computation resources is many more
along with number of simultaneous arrivals .In such cases computation resources are
fairly portioned among coordinating units. Suppose a CPU having 1000 cycles in one unit
time which has to distribute among 5 jobs where each job has varied numbers of threads
as described:

Table 2.1: Showing Distribution of CPU cycles according to fair share policy

CPU Burst Cycles 1000

Process 1 Process 2 Process 3 Process 4 Process 5
200 200 200 200 200
TU1 | TU2 | TU3 | TU4 | TUS | TUL | TU2 | TU3 TU1 TU2 TU1 TU2
40 40 40 40 40 | 66.6 | 66.6 | 66.6 100 100 200 200

2.2.1.2 Gang Scheduling: - In this type of scheduling the scheduler schedules the
number of threads or processes of the same nature in such a way that the same type of
processes execute at the same time on different number of processors. The threads of the
same nature that are running simultaneously shall belong to the same process or they

might belong to different processes.

12
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2.2.2 Dynamic Scheduling :-In these policies the reallocation of the assigned processors
to a particular workload can be done as per the requirement .For reallocation to be done
the jobs in the given work load should be in such a way that they can run on different
number, types of processors, than the initial requirements of the job. In dynamic
scheduling we can change the number of processors requirements before the execution
begins, during the execution. The dynamic scheduling gives better results. Assume
initially before execution of the job if a job requires C; clock cycles and B burst cycle
then after t; time the requirements will not be same after a certain time t, and we can

reclaim the resources initially assigned.

2.3 Research towards Workload Characterization
2.3.1 Work Load Characterization:
It is classified into types:
e Synthetic workload
e Actual workload
2.3.1.1Synthetic Work Load
Sample based simulation experiment is performed where synthetic workload is generated
using random distribution. Simultaneous job arrival may exist, so batches of jobs are

organized. Each batch contains number of jobs arrived at same instance with

13



characteristics like Job Id, CPU Burst, Processing Demand. Overall simulation structure
consists of processor availability space also known as POS (processor offered space),
their frequency clock, Front End Job Queue along with Batch Id and their respective no.
of jobs, overall allocation status, currently active job status, simulation start and end
time, Excessive cycle length, Policy Detail etc.. In general simulation design is based
upon multithreading synchronization. Each thread is intended to perform their assigned
work like maintaining incoming batch queue, overall allocation status, organizing
currently active scheduling list, lists of completed jobs etc. As described each job having
its unique identification (JID) and burst cycle refers to the estimated time in terms of CPU
cycle required. Processing demand specifies range of processor required by each job,
Synthetic work load front end queue (SWFEQ) is generated according to specific
processor configuration criteria, during schedule synthetic load will be mapped to current
processor configuration available irrespective to the configuration specified during load
generation. ECL (Excessive cycle length) specifies extra cycles (exhausted) of allocated
processors in terms of each job execution. During job life cycle there may be a situation
arise where the processor allocated earlier is much more than required, this is because as
the job move towards their final stage of completion the parallelism may change. In this
case excessive cycle length will be computed. Although scheduler may obtain excessive
processors from such jobs and allocated them to next waiting jobs in the front end job
queue. This will provides the benefits that more no. of currently active list. But
readjustment during job completion end may be more costly because execution paused
and then restarted after demand adjustment. Otherwise if not obtained excessive
processors from within job’s execution life cycle, the ECL value may be high on each
time barrier. Up to this time this is the hypothetic view, further these scenarios will be
analyzed along with different scheduling schemes by above described parametric aspects
to decide which scheduling scheme is best suited on which situation.

Following are the simulated workload generation for various jobs:

14
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2.3.1.2 Actual Work Load

Is a real time job which is running in the processor’s memory takes input stimuli and
Output stimuli? Such jobs utilizes CPU time, register for its operational task. Such tasks
have real time interaction along with system components and the user. Basically a
computation process in real code process consists of control flows basis on the
conditional expression, iterative flows, program sequence control in addition code

regeneration by compiler for performance efficiency.

2.3.2 Characterizing Moldable Parallel Jobs

Walfredo Cirne and Francine Berman (2001) outlined that the type of input given to the
supercomputer scheduler effects a lot on its performance. So it is important that before
evaluation of super computer scheduler the workload must be effectively reviewed. The
rigid parallel jobs require that they must be partitioned into fixed sizes in order to run

effectively. The moldable jobs which have the capability to run on a different number of
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partitioned size have majority in certain kinds of jobs called parallel jobs. In this paper by
using good analytical models and based upon user survey a workload model for moldable
jobs is described. In order to develop a performance efficient strategies for the selection
of job partition size and for the enhancement of supercomputer scheduler the model

proposed by him can be directly applied.

Allen B. Downey in (1997) by observing a large number of parallel computers in the
Cornell theory centre and San Diego super computer centre developed a workload model.
This model helps us in checking the performance of various strategies while scheduling
the moldable jobs on a parallel systems having space sharing architecture. In his research
they reach to the conclusion that Adaptive static partitioning (ASP) which was supposed
to work in a effective manner for other workloads, is not performing very well compared
to the strategies that adapt the system load. The best strategy he considered one is that

helps in reducing allocations when high amount of load is there. [12]

J.T. Moscicki, M. Lamannaa, and M. Bubak (2012) shows that performance and
reliability of large grid infrastructures may suffer from large and unpredictable variations.
In this paper the impact of the job queuing time on processing of moldable tasks which
are commonly found in large-scale production grids has been studied. They use the mean
value and variance of make span as the quality of service indicators. The general task
processing model which provides a quantitative comparison between two models: early
and late job binding in a user-level overlay applied to the EGEE Grid infrastructure has
been developed. In this research, they find that the late-binding model effectively defines
a transformation of the distribution of makespan according to the Central Limit Theorem.
As demonstrated by Monte Carlo simulations using real job traces, this transformation
allows to substantially reducing the mean value and variance of makespan. For certain
classes of applications task granularity may be adjusted such that a speedup of an order of
magnitude or more may be achieved. He use this result to propose a general strategy for
managing access to resources and optimization of workload based on Ganga and DIANE
user-level overlay tools. Key features of this approach include: a late-binding scheduler,

an ability to interface to a wide range of distributed systems, an ability to extend and
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customize the system to cover application-specific scheduling and processing patterns and

finally, ease of use and lightweight deployment in the user space. They discusses the

impact of this approach for some practical applications where efficient processing of

many tasks is required to solve scientific problems.[6]

2.4 Effective Scheduler Characteristics

They Salient Features of a effective scheduler are as follow:

L.

11.

1il.

1v.

V1.

Dynamic:-The scheduler must have capability to process the load changing in
processors as well as demand changing in execution of the given job set and
should be capable of providing the given amount resources in an effective manner.
Effective resource Mapping — Effectiveness in terms of Resource mapping i.e.
effective mapping provides increased throughput as well as reduced task
adjustment efforts.

Synchronized Thread- scheduler must ensure the synchronization of running
threads in network based communication flows, although simulation may also
require synchronization aspects but minimum as compare to network based
parallel designs.

Transparency: - The transparency is in the terms of execution of the task either
from the local or remote. Same set of the results must be produced from local and
remote machine. The user must have ease of such a way that whether remote
execution is going on or local execution is going on. For developing such types
of facilities certain programming expects like RMI(Remote method invocation )
in JAVA is very helpful, where it seems to a user that local calling of a function
is going on but a function which has been called is actually existing on some
another machine.

Fairness: - It is concerned with the aspect that each demand must be fulfilled in a best
affective manner. So that the given amount of resources are effectively distributed among
various requirements. Further it is also as per the user requirement that a thread level or
process level fairness has to be provide. Depending upon whether to schedule large
number of jobs or earlier completion of lesser number of jobs is required.

General purpose: - As different set of load can arrive comprising of different set of

applications like some can be real time jobs requiring space sharing scheduling, non
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iterative batch jobs which might require time sharing scheduling. So scheduler must

provide up to some extent of the services for any type of job arriving in general.
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Chapter3
Proposed Work

3.1 Problem Formulation
Parallel distribution of workload among the number of the processors is not only the task
through which we can achieve high performance but also regular management of
allocation of the processors to the large number of the job arrival is of also large
importance .In super computer systems there are sort of infinite job arrivals with varying
amount of requirements from system like number of processors, varying frequency of
processors requires, number of jobs to be run in a parallel, sequential way etc that is the
reason that a lot of adjustment effort is required to map processors space over job space.
Main problem arises because such required characteristics for each job is not available
and an efficient amount of dynamic parallel molding for requirements of jobs has to be
done in order to achieve high performance in terms of number of simultaneous execution
of jobs, more execution of the threads of a single job at a given time. Certain types of jobs
called moldable jobs can provide us the facilities such that we can change the
requirements of the job but these decisions has to be taken before the starting of the
execution of the job. The effectiveness will depend upon task adaptability structure and
the way the scheduler is assigning the resources. In the thesis three dynamic polices has
been discussed through which the effective resource management can be done in a better
way.
The main objectives of the thesis are:-
i.  Distribution of jobs with efficient resource mapping.
1.  Managing throughput in terms of simultaneous thread/process execution.
iii.  Achieving demand adjustment benefit by overlapping processor space to job
space.
iv.  Adjusting clock speed variations before actual demand adjustment needs.

v.  Considering effect of dynamic parallelism change during job execution life cycle.

20



3.2 Space sharing policy

Space sharing policy where each job may have more than one processor, single job
having multiple thread in action, distributed among two different processors for
simultaneous execution. This is necessary because sometimes multiple threads perform
inter-process communication, for achieving parallelism job scheduling requires multiple

processors in execution.

Incoming
¥ Batch
Dispatcher 3
. Batch Scheduler
Current Available
Batch1
Space
v Batch 3
Processors Batch 2
Space
P Batch5
Availability Manager Demand Adjustement Batch4
Controller BatchS
Batch&

Figure 3.1: Showing space sharing policy in action

3.3 Demand Based Model for Moldable Scheduling

Parallel job workload involves multiple job arrivals consisting varying processing
demand, sometimes not fulfilled due to the current availability requires, adjustment as
described by below process model. Generally moldable or malleable structures are used
in schedulers, because in both cases, the demand adjustment is required. In moldable, the
scheduler performs the demand adjustment according to the current availability and no. of
tasks yet not allocated. The decision is in the hand of schedulers, performs resource
management. In malleable scheduling, the decision of demand adjustment is dynamically
performed but on the request of jobs, this decision is taken by job itself, although
adjustment is performed by scheduler or its intended component but after issuing the
request by job, demand may be decreased or increased as job request, schedulers
component will manage availability and demand requests, such jobs are malleable, job

controller has the functionality to manage processing demand for each of its running
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Figure 3.2: Showing Demand Based Model for Moldable Scheduling
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3.4 Approaches to Demand Based Allocation Schemes

Several approaches have been developed, some of them are developed on the basis of
rigid based job characterization, other are on the bases of moldable and malleable demand
adjustment approaches. Selection of a particular approach will depend upon the current
availability and requirement currently ready for schedule. Most of the times adjustment is

required.

3.4.1 Strictly Demand Fit Allocation (SDF)
Scheduling decisions where processor demand for each job is fixed and allocated with as
much as processor required is a kind of strictly demand fit allocation (SDF). Purely a
static processor space division where a job is not executed until the required number of
processors are not available.
For each JID in FrontEndJobQueue
do
Set Curr_Dem « Get_Pr_Demand(JID)
Set Curr_Avail <« Get_AvailPr()
If Curr_ Dem <= Curr Avail then
SetMode(Active, JID)
Allocate(JID, Curr_Dem)
Set Curr_Avail « Curr_Avail - Curr_Dem
Set AvailPr(Curr Avail)
Else
SetMode(Wait, JID)
endif
endfor
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Set JIndex«0

‘ »| Set JID « Front End job_ queue ]

v
[ Cur Dem «— Get Pr Demand(JID) ]

1\
~—

Monitoring Job
Completion and
dynamic parallelism,
change

R

Scheduler Continues monitoring Control

A 4
Processor Free
[ Curr_Availe Get_AvailPr() List Maintenance
thread

Curr Dem <=

. _,[ SetMode(Wait, JID) ]
Curr_Avail

Allocate(JID,Curr_Dem)
Set Curr Avail < Curr_Avail — Curr_Dem

!

{ Set JIndex<]Index+1 ]

Figure 3.3: Flow chart showing working of strictly Demand Fit Allocation (SDF)
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Figure 3.4: Showing Simulator status strictly Demand Fit Allocation (SDF)

5.2 Extreme-Ending Moldable Approach (EEMA)

Although the final job whose demand does not satisfy, can be moldable to adapt as much
as processor space available also referred to as EEMA (Extreme-Ending Moldable
Approach). Applicability of such scheduling schemes is only to those systems where

overall needed resource request is less than currently available resource limit. Following

is the distribution logic

For each JID in Front End_JobQueue
do
Set Curr_Dem « Get_Pr_Demand(JID)
Set Curr_Avail « Get_AvailPr()
If Curr_Dem <= Curr_Avail then
SetMode(Active, JID)
Allocate(JID, Curr_Dem)
Set Curr_Avail « Curr_Avail - Curr_Dem

Set _AvailPr(Curr_Avail)
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else
Set_Mode(Active,]JID)
Set_Pr_Demand(JID, Curr_Avail)
Allocate(JID, Curr_Avail)
Set Curr_Avail « 0
Set Avail(Curr_Avail)

endif
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Figure 3.5: Flow chart showing working of Extreme-Ending Moldable Approach
(EEMA)
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5.3 Moldable-Load Impact Demand Adjustment (M-LIDA)

Normally a parallel application is designed for a particular processor characteristics, onto
which when executed gives tremendous performance but usually architecture employed
for execution is not best satisfied to their configuration needs. So such applications are
required to adjust their processing demand based on POS (Processor offered space). In
other words jobs are converted to moldable while considering what is to be required and
what is to be offered. This scheme is referred to as a M-LIDA (Moldable-Load Impact
Demand Adjustment) i.e. present load of job and required configuration is adjusted to
offered processor space.
For each JID in Front End_Job Queue
do

Set Curr_Dem « Get_Pr_Demand(JID)

Set Syn WL_Freq « Get_Pr_Freq(JID)

Set Avail_Pr_Freq « Get_Pr_Avail_Freq()

) Curr_Dem X Syn_W _Pr_Freq
Set Adj_Dem =

Avail_Pr_Freq

Set_Adj_Pr_Demand(JID, Adj_Dem)

If Adj Dem <= Curr Avail then
SetMode(Active, ]ID)
Allocate(JID, Adj_Dem)

Set Curr_Avail « Curr_Avail - Adj_Dem
Set AvailPr(Curr_Avail)

else
SetMode(Active, JID)
Allocate(JID, Curr_Avail)
Set Curr_Avail < 0
Set _Avail(Curr_Avail)

endif

endfor
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Get Pr Demand is software routine for getting current demand of a specified JID.
Similarly Get Avail Pr computes no. of processor currently available till current
allocation barrier. Job can have either active or waiting status mode. Active status is
which is ready for dispatching after fulfilling all of its processing requirements. Allocate
and Set Avail routines corresponds to the job allocation and setting up available processor
space respectively. Demand of any job can be adjusted depending upon conditional
construct using Set Pr Demand. This routine is only executed during moldable
approaches. Synthetic workload as described virtually generated dummy job structures
based upon pre-determined processor frequency. Although such type of processors may
or may not be available during actual execution. Job demand can be adjusted based upon
synthetic and actual available processor frequency, above approaches defined on the basis
of space sharing policy mechanism. Allocation is performed on the basis of simultaneous
processing thread available for each job, and then the job space will be divided among

processor Space.
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[ Curr_Avail =Total idle processors currently available ]

A 4
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Figure 3.6: Flow chart for working of Moldable-Load Impact Demand Adjustment (M-
LIDA)

30



=] =N

Task

Multiprocessor Job Demand Adjustable Policies
Rigid Job-Best Fit Demand Allocation
Rigid Moldable-Demand Adiustment
Moldable Load Impact Denand Adjustable Palicy

Processor Availability Width Incomming Job Set Excessive Cycle Length Simulation Status
SIS Simulation Start
Tatal Mo of Processor Speedin = e, of Jobs 2053564691 B [0204:44 P
b | cpeain i [13 | e i
Pocessarllsed | 30 ksl [20 | bt ] Simulation End
Batch Arival [02—04 45 PM | 053912026 Time
Cycles/ Sac 3800000000 foamised s |20 | ?’slem Time D
Time Caunter :lzzm ST Suier,
Allocation Status Job Status Demand Adjustable Policies Front End Job Queue
Jobld  Actual Adsted | Completed  Batch  Batch D Aloted  CPUBust  Cyolelsh Type Batches Jobld  Proc.  CPUBust Cycle
P_Dem Prac Dem Jobs  Completed  Comletion Prac. Cocle T ——| Demand
i g 3 1 ] TEHGFH) | | [17 T TEHEI00E | [T264636560 = (e — | P
2 3 3 12 18 3 11115998745 | 11115998745 W4 L [0208aE LTI IS L (6 [T977066085S
13 5 5 13 19 8 1BB4EENT243 | 16848601243 | | TetalJobs vi5 DzDaddrg) | 16 g 2 g (6232204199 o
14 5 5 1 10 1 TIeBEZEBE) | |TIEEEZER0 | | L viE gg g: :: ﬂg 3 g 3 ?3355?3353 =
5 5 5 J5 1 4 11322745562 1132274556, omp. Jobs D w7
I 5 5 J6 NH 6 12553 | |174T25ERe i gg gj jg ﬂg g ?g_‘ﬂ g:nﬂaggw
7 5 1 113 3 10192974091 | 10132974090 | | | ToralBatches [70
s 3 3 4 3 1763341618 | 17633741618 2 ?n 020444\ | | 1421 6 18323839163
e ; RN e e S i
v
e i H Coup. Batches w1z | [o20aaal || loe | 1334641161
112 4 : G1a |o(02044d) || )25 4 13285726735
13 3 H 14 |oe0sae ] s 3 10269753218
111 : H Y 020444 | | 327 3 10533824158
w15 02.04:44 128 6 19200505658
v 16 02:04:44 28 4 12714408636
Stop w7 020444 430 6 16333851341
= V18 02:04:44 31 3 3498442173
Status Log V13 02:04:44 32 5 15636966277
. _l0z0s4s || 33 § 173021 06958
Clear Log 020445 ~| | [J3a <] [7 =||19714546443 ~

@M C @ ij G’@‘ T’EW@” | BRI
Figure 3.7: Showing Simulator status Moldable-Load Impact Demand Adjustment (M-
LIDA)

5

5.4 Proportionate Processor Width Partitioning (PWP)

Dynamic approach for processor allocation is usually applicable where (NOPA) no. of
processors available are less than the no. of processors required (NOPR) by a batch of
jobs. Simultaneously, occurred jobs will be grouped under batches. So ultimately the idea
is to allocate complete batch regardless of no. of jobs within that batch and their
respective demand. So availability should be best adjusted to currently ready batch even
the total batch demand is greater than the currently offered processor space. If processor
offered space POS is more than that of PRQ processor required space than any of the
above defined approaches can be employed but proportionate scheme is applicable to
batch oriented systems where POS is least than required, the best adjustment will be
performed.

Total_Dem_Batch; = }.i_, Job_Dem;

Where jth is the batch. Proportionate scheduling will be applied only when following two

conditions are meet:-

31



a.) Current availability of processor should be less than or equal to total demand
required by the current batch.
b.) Also no. of available jobs in the batch must be less than or equal to current

availability of processors.

Otherwise if the current availability is more you can employ any of the above defined
policy than proportionate. Basic idea is to active complete batch with best processor

managed space.

n

AdiD ciut | Existd Total_Avail
JEem,, s nt| Batstiem; Total_Dem_Batch;

i=1

In this case demand of i job in jth batch will be adjusted. This process is performed for
each job in the batch at once. During each adjustment total availability as well as total

batch demand will be changed.
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Figure 3.8: Flow chart for working of Proportionate Processor Width Partitioning (PWP)
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3.4 Demand Adjustment Benefits

Benefits for demand adjustment in (M-LIDA) before allocation provides tremendous run-
time change in ongoing parallelism. Other policy structures, where major motivation is on
allocation without considering resource adjustment mapping against given load are
follows static aspects of workload assignment. Executes jobs only when corresponding
required resource configuration is available. Advantage of resource/demand adjustment
(lower to higher frequency) against given load leads to the increased no. of currently
active scheduling jobs, increases PLP (Process Level Parallelism). Another advantage of
demand adjustment policies irrespective to frequency adjustment, If the processor offered
space (POS) is available more in comparison to previously executed scenario ultimately
the currently active jobs will also increases. So in demand adjustment either the POS
value is increased or higher frequency processors are available than synthetic one, the
result will be increased no. of active job as described in fig-3.10. However, in demand
adjustment if lower frequency processors are available than required the result will be
increase in job’s demand and ultimately the currently active list will be dependent upon
POS value available as shown in the fig-3.10. For example if synthetic workload
processor frequency is of 2.0 Ghz and the system has only 20 (POS) processors available
of 1Ghz each. Now if a job occurred having demand 5 ultimately during adjustment his
demand will be adjusted to 10 leading to occupying half of the POS space. So
automatically affected to currently active jobs sets i.e. decreased Process level parallelism
(PLP). Despite of this, where demand adjustment against load with respect to running
processor frequency is not considered, currently active jobs will be increased only when
processor offered space is increased rather than their frequency clock as described in
Figure 3.9. Also these policies leads to higher Excessive cycle length (processor cycle

wastage) as compare to demand adjustment policies described later.
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As in the above graph, Strictly Demand Fit policy has been applied, as the no. of
processor increased without increase in the processor frequency, the currently active jobs
are more. This provides the benefits over increase in frequency, so no matter what the
speed of the processor is — only the key issue is how much POS (processor offered space)
is. But in load adjustment policy (M-LIDA) where either frequency is increased or POS

value is increased, the currently jobs set is increased automatically. Because after load

Figure 3.9: Currently Active Jobs in SDF
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Figure 3.10: Currently Active Jobs in M-LIDA with POS-20
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3.5 Run Time Demand Adjustments

During each periodic time barrier, Load adjustment scheduler Performs monitoring each
job’s remaining scheduling cycles with respect to no. of processor allocated and their
respective frequency. If possible the demand will be adjusted; there are two cases of this
dynamic demand change management. If the processors are allocated approximately near
to the required demand like in M-LIDA, the demand will decreases during further
completion stages, there is no case available in which demand will increases. Another
case, which is occurred in proportionate allocation where demand is already set to
minimum calculated threshold, so in this case the demand might increase or decrease
during further adjustment. Following is the formal method for dynamic demand change

management.

Act_Que_Length

AdiD _ R d( RemRemCycle; )
Jrem: = oun Allo_Pr _Frq

i=1
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Chapter-4

Results and Discussion

4.1 Parameters under consideration

Simulation produced while considering above defined policies takes synthetic workload

as input. Several parameters have been studied and considered for constructing

illustrations. Factors and their respective detail is as follows-

1.

11

Currently Active Jobs: This parameter defines currently active jobs by managing
current processor availability. If more no. of currently active job running, then
process level parallelism will be increased i.e frequent response from the system
to many no. of parallel users.

Excessive Cycle Length (ECL): This parametric value defines processor
allocated in excess than required. As the job reduces its burst during its execution
life cycle its processor requirement will be reduced. As the job execution life
cycle reaches at its final stage, the length of ECL will increase. Although,
processor demand can be changed to current required but at final stage adjusting
demand will be more costly than continuous execution with the previous
allocation. Changing job demand will pause its execution. Time consumed for
adjustment might be more expensive than consumed with previous defined
allocation. There may be the possibility that job’s final execution level will be
completed within that time. For example:

e Suppose a particular job requires 5 processor of frequency 2.8 Ghz with
CPU burst 148674578647 .But available processors are of 3.8 Ghz
Total number of cycles available= 3.8*10° *5=19000000000
ECL=19000000000-14867457867=4132542133

This is the amount of excessive cycle wastage which has occurred as the available
processor is of higher frequency (3.8) than the required frequency (2.8) and we
did not calculate the actual requirement based upon different configuration

available. In the thesis based upon the different policies discussed, the ECL is

37



1il.

1v.

calculated. ECL for SDF came to be maximum in case of EEMA and minimum

for PWP.

Excessive Cycle Length, 20-Proccessor, Batch 1000, Jobs-11690 Processor-Synthetic Freq. 2.8Ghz
To 1.0 Ghz
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Figure 4.1: Excessive cycle Length

Overall Execution End Time (OEET): This parameter defines the maximum
simulation time (sec) to compute given no. of batches. Although this parameters is
a static one because if the requirement is to manage processor offered space along
with increased currently active job set, then this factor may increase overall
simulation time.

Total N—Scheduled Job: Total no. of scheduled jobs up to a given time barrier is
another factor to evaluate simulation efficiency in terms of throughput. This will
combine no. of completed jobs along with no. of currently active jobs.

Processor Utilization Per Process: This term can be defined as processor
managed space at process level/thread level. If the thread level parallelism is
increased more no. of processors are allocated to single active job to handle MSPT
(multiple simultaneous processing threads). Ultimately the current active job set
will be decreased. Performing best processor space management jobs are
converted to moldable/malleable structure [9] [10], this will increase process level

parallelism.
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vi. ~ No. of Completed Jobs — This term can be defined as actual throughput obtained
at any given timer barrier. Only no. of completed jobs are evaluated at each timer
barrier as-

Total Comp_Jobs = Total_N_Sched — Curr_Act_Jobs

4.2 Experimental Setup

Simulation based proposed implementation is developed using Visual Basic Studio 6.0 in
order to evaluate the proposed moldable scheduling algorithms under various
constraints/parameters. Most of the cases the simulation modelling can provide us more
generalized results which are most promising as compared to actual implementation on
hardware. Further the evaluation of algorithms over a broad range of characterization like
changing number of processor requirements of each job, varying processor frequency for
each job, varying CPU burst time for each job etc. Job queues associated with the
logically programmed virtual processors are used in order to implement various
scheduling policies. The simulation environment consists of synchronized communication
using various thread timers controls available in language. The setup consists of number
of batches arrived using random distribution covering workload aspects such as unique
Batch_ID, each Batch Id consists of its associated job list having unique Job Id, CPU
cycle burst required, processor demand etc. CPU burst cycle specifies the length of
execution of a particular job. As the cycle length increases the amount of time of
execution will also increases. The cycle capacity of each processor will vary according to
the operational clock frequency of that particular processor. Characteristics of the
simulation environment:-

i.  Graphical user interface: It helps in ease to use and understanding of how the
things are working in a user friendly manner.

ii.  Different menus: The simulator has different buttons for different purposes like
generation of the work load with required number of processors, various
frequency selection options through drop down list. There is also an option
through which we can clear the entire database with just a single click. So that
any inconsistency during data collection can be avoided. For taking snapshot of

the database at a particular time there is also Start/Stop button.
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V.

Data storage: Data generated by applying various policies is stored in MS-
Access.

Status Window: It tells the current status of the simulator.

Various checkboxes drop down lists, text boxes: All these toolkits helps in
giving inputs, data capturing generated during the execution.

Performance measurement during execution:-The text boxes for simulation
start time, end time, excessive cycle length etc. helps in measuring run time status
at various intervals.
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Figure 4.3: Showing different components of simulator
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4.3 Illustrations

In case of M-LIDA frequency of processor is increased or decreased rather than their POS
value (20), results are better than in SDF policy allocation. In case of SDF results are
better only when POS value i.e. 20 to 30 is adjusted. No efficient effect seems to display
when frequency is increased in SDF. In spite of this, the results are also better when POS

space value is increased in M-LIDA rather than frequency as described in figure below

M-LIDA -Currently Active Job Sets - 30-Proccessor, Batch 1000 Jobs-11690 Processor-Synthetic
Freq.-2.8Ghz
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Figure 4.4: Currently Active Jobs in M-LIDA with POS-30.
In proportionate processor width partitioning scheme, POS space will be managed as
minimum as possible so always increase in currently active list, although delay may be in
final job completion. So ultimately whole simulation will end by consuming much of the

time than other policy execution as describe in the below illustrations.
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Figure 4.5: PLP (Process Level Parallelism) - in PWP.

Consider the above PWP proportionate processor width partitioning graph for currently
active job. The policy will have long execution cycle. Although currently active job set
will be increased leading to more process-level parallelism as compare to thread level
parallelism. This also leads to more delay within overall execution completion i.e. jobs
completion time will be more. This is because the processors are allocated less as
compare to requested demand. The current state of affairs shows that policy is applicable
where focus is on increased multiple user response required i.e. more no. of users are
responded at given time barrier. Process level parallelism also takes care of job’s
initiation time i.e. jobs are invoked earlier even with less processor scheduled as required.
Further illustrations describe demand adjustment gives benefits to where exact mapping
of required resources is not performed. The Figure 4.7 to Figure 4.10 exhibits as the
frequency is adjusted from lower to higher the result will be better in M- LIDA. Despite
of this, if frequency is adjusted from higher to lower then the resource demand will be
increased per process, PLP will be decreased as described and thread level parallelism
will be increased. Total No. of Completed Jobs considered as a key factor of measuring
overall performance in terms of throughput at particular barrier time. Further, the analysis

produces throughput effect attained by each of the scheduling structure.
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Figure 4.6: Overall Execution End Time

Below are the variation graphs captured at different processor frequency available.
Ultimate idea behind this is to illustrate process level parallelism i.e. more currently
active jobs. The graphs produced described different policy sets corresponding to discrete
processor frequency. Although increased currently active set does not lead to more no. of

completed jobs.
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Figure 4.7: PLP (Process Level Parallelism)-2.8 GHz to 1.0 GHz.

This is because as more as the processor managed space, delay in final job completion
time end as described above in figure 4.6.
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Figure 4.8: PLP (Process Level Parallelism)-2.8 Ghz to 2.0 Ghz.

Excessive cycle length is computed in terms of wastage i.e. extra processor allocated. Processor
once allocated if not adjusted due to parallelism change will lead to ECL. M-LIDA Policy
structure always monitors ongoing parallelism change and allocated the processor as required by
corresponding load remaining. This is required to schedule next batch as earlier as possible

without incorporating delay as much as possible.
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Figure 4.9: PLP (Process Level Parallelism)-2.8 GHz to 2.8 GHz.
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Figure 4.12: Throughput— 2.8 Ghz to 1.0 Ghz.
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As described if frequency is adjusted from higher to lower, overall end timer barrier will be more

in each of the policy.
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Figure 4.13: Throughput— 2.8 GHz to 2.0 GHz.
No. of completed jobs calculated cumulatively at each barrier is also less as compare to
scenarios captured from lower to higher frequency. Policy structures SDF and EEMA
where PLP status is less as compare to PWP policy mechanism i.e. TLP thread level
parallelism is more in SDF and EEMA, also throughput is more than PWP. These are

demand promising approaches i.e. more prone to demand satisfaction.
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Figure 4.14: Throughput— 2.8 GHz to 2.8 GHz.

In M-LIDA the demand will be adjusted to current need of the job, so remaining allocated
processors are placed into free list and are scheduled to next incoming jobs. So ultimately
overall end time will be shorter in any case as compare to other, also throughput will be

more in all the cases illustrated.
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Figure 4.15: Throughput— 2.8 Ghz to 3.4 Ghz.

Consider PWP division where processors are allocated earlier as minimum as possible,

later on demand of some jobs might be increased depending upon

the processor

availability, if decreased will be beneficial and POS space will be more in that case. Two

conditions must be met to schedule a complete batch in PWP. Otherwise the remaining

POS will be adjusted to currently active jobs to fulfill their processing deeds. This will

make delay in next batch allocation
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Figure 4.16: Throughput— 2.8 GHz to 3.8 GHz.

The produced illustrations exhibits that for better processor managed

demand adjustment is required. Consider PWP where small no. of

space (PMYS),

total jobs are

completed against each time barrier as compare to other policy mechanisms, although
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PWS has more currently active set. So more number of active jobs produces delay in
overall completion as well as delay in average completion time of each job.

TLP (Thread Level parallelism) in M-LIDA is also very close as compare to demand
promising jobs, this is because demand is adjusted depending upon the required cycle
burst, demand may be increased or decreased corresponding to the current configuration
available. Now ECL excessive cycle length will be demonstrated in further produced
illustrations.ECL list is more in demand promising jobs, because focus is on satisfying
best possible allocation to each job wherever possible, because of no consideration of

processors dynamic characteristics i.e. speed corresponding to job demand
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Chapter 5

Conclusions

5.1 Conclusion

Described Illustrations exhibits that M-LIDA and PWP policy mechanism will be best in
processor managed space (POS). In addition ECL list is minimum along with
incorporating demand promising model (DPM) in M-LIDA. However for increased PLP
and minimum priority for overall completion time PWP will be best. The idea behind this
implementation research is because in realty there will be a mismatch in required space
and available space. So execution over discrete frequency sample provides best selection
for real time infinite job execution. Extremely end moldable job will be best that SDF,
small amount of change in the logic. At the end, when processor availability does not
satisfy the job demand, job will be converted to moldable by allocating as much as
processor space available. This will lead to more execution at each time barrier i.e. (n+1)
jobs are allocated as compare to SDF. ECL wastage in M-LIDA is due to the final end of
the job execution where only single processor allocated and remaining left cycle of job is
less than the frequency of that processor. In PWP processors are allocated as minimum as
possible so job burst cycles are mostly greater than the frequency of allocated no. of
processor of the job. So produces delay in reaching final job’s completion end. In addition
ECL produces as less as compare to other policy mechanism with a longer length.

Following is the behavioural analysis described along with various policies parameters:
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Low

Ex-Low %

High

Table: General Policy Behavioral Analvsis

Table 4.1:-Showing Summarize behaviour of various parameters for various Schemes

»  Ex-High

Factor/Policy SDF EEMA M-LIDA PWP
DPM Ex-High High High Ex-Low
LAD No-Effect | No-Effect High Ex-High
TAS No-Effect | Ex-Low High Ex- High
PMS Low Ex-Low High Ex-High
PLP Ex-Low Low High Ex-High

TLP (MSPT) | Ex-High High Ex-High Ex-Low

Table: Comparative Analvsis — With Processor Frequency Variations

Factor/Policy SDF EEMA M-LIDA PWP
CAL Ex-Low Low High Ex-High

Throughput Low High Ex-High Ex-Low
ECL High Ex-High Low Ex-Low
OQEET High Low Ex-Low Ex-High

Table: Comparative Analvsis — with Increased POS value

Factor/Policy SDF EEMA M-LIDA PWP
CAL Grow Grow High Ex-High

Throughput Low High Ex-High Ex-Low

5.2 Future Work

Future work will contain other dynamic policy methods to incorporate best processor
managed space i.e. possibly more no. of parallel jobs with increased throughput as well as
less excessive processor allocation. Usually the parallel jobs itself describes its processing
demands i.e. no. of processor required. However this factor doesn’t remains constant
throughout the jobs execution life cycle. So there should be a mechanism to detect job’s
processing deeds by the scheduler itself, one approach to automatic detection of the job
demand is based upon the DAT (Directed Acyclic Tree). Each job processes its execution
with in a no. of phases. Ultimately a phase driven behaviour with in a parallel job
execution model Parallel job driven model encompasses no. of thread to work out within
a cooperative environment. So initially, during the earlier phases of job execution life
cycle the no. of child threads encompasses are very less. As the phases completes towards
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their final attempt the no. of threads within each phase will vary so demand will be
automatically identified by the scheduler. Further the cluster grid computing can be
employed to evaluate performance of parallel algorithms. Network Architecture will
behave like a parallel cluster for high data and computation intensive work, future study
may incorporate cluster base experimentation. MPI based parallel interfaces are included
for communicating control messages [10] [11]. PVM may be employed for parallel
control constructs to for grid computing, cluster interconnection may designed for a
particular set of application however load may be balanced among clusters for

synchronizing .
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